Skip to main content
Glama

CodeFlow: Cognitive Load Optimized Code Analysis Tool

Overview

CodeFlow is a powerful Python-based code analysis tool designed to help developers and autonomous agents understand complex codebases with minimal cognitive overhead. It generates detailed call graphs, identifies critical code elements, and provides semantic search capabilities, all while adhering to principles that prioritize human comprehension.

By extracting rich metadata from Abstract Syntax Trees (ASTs) and leveraging a persistent vector store (ChromaDB), CodeFlow enables efficient querying and visualization of code structure and behavior.

The tool provides three main interfaces:

  • CLI Tool: A command-line interface for direct analysis and querying of codebases.

  • MCP Server: A Model Context Protocol server that integrates with AI assistants and IDEs for real-time code analysis.

  • Unified API: A single programmatic interface that automatically detects and analyzes both Python and TypeScript codebases.

Features

Core Analysis Capabilities

  • Deep AST Metadata Extraction (Python & TypeScript): Gathers comprehensive details about functions and classes including:

    • Parameters, return types, docstrings

    • Cyclomatic complexity and Non-Comment Lines of Code (NLOC)

    • Applied decorators (e.g., @app.route, @transactional)

    • Explicitly caught exceptions

    • Locally declared variables

    • Inferred external library/module dependencies

    • Source body hash for efficient change detection

    • Source body hash for efficient change detection

  • Structured Data Indexing (JSON/YAML):

    • Parses and indexes configuration files (.json, .yaml, .yml).

    • Enables semantic search for configuration keys and values (e.g., "database port", "api url").

    • Flattens hierarchical data into semantic chunks for precise retrieval.

  • Unified Interface: Single API that automatically detects and analyzes both Python and TypeScript codebases without manual language specification.

  • Intelligent Call Graph Generation:

    • Builds a graph of function-to-function calls.

    • Employs multiple heuristics to identify potential entry points in the codebase.

  • Persistent Vector Store (ChromaDB):

    • Stores all extracted code elements and call edges as semantic embeddings.

    • Enables rapid semantic search and filtered queries over the codebase's functions and their metadata.

    • Persists analysis results to disk, allowing instant querying of previously analyzed projects without re-parsing.

    • Automatic Cleanup: Background process removes stale references to deleted files, keeping the index accurate and efficient.

Visualization and Output

  • Mermaid Diagram Visualization:

    • Generates text-based Mermaid Flowchart syntax for call graphs.

    • Highlights functions relevant to a semantic query.

    • Includes an LLM-optimized mode for concise, token-efficient graph representations suitable for Large Language Model ingestion, providing clear aliases and FQN mappings.

MCP Server Features

  • Real-time Analysis: File watching with incremental updates for dynamic codebases.

  • Background Maintenance: Automatic cleanup of stale file references in the vector store to maintain index accuracy.

  • Tool-based API: Exposes analysis capabilities through MCP tools for AI assistants.

  • Session Context: Maintains per-session state for complex analysis workflows.

  • Comprehensive Tools: Semantic search, call graph generation, function metadata retrieval, entry point identification, and Mermaid graph generation.

CLI Tool Features

  • Batch Analysis: Complete codebase analysis with report generation.

  • Interactive Querying: Semantic search against analyzed codebases.

  • Flexible Output: JSON reports, Mermaid diagrams, and console output.

  • Incremental Updates: Query existing analyses without full re-processing.

Cognitive Load Optimization

  • Designed with principles to make the tool's output and its own codebase easy to understand and use.

  • Mental Model Simplicity: Clear, predictable patterns in code and output.

  • Explicit Behavior: Favor clarity over brevity, making implicit actions visible (e.g., decorators).

  • Information Hiding & Locality: Well-defined modules, keeping related code together.

  • Minimal Background Knowledge: Self-describing data, common patterns, reduced need for memorization.

  • Strategic Abstraction: Layers introduced only when they genuinely reduce overall complexity.

  • Linear Understanding: Code and output structured for easy top-to-bottom reading.

Comparison

System

Project Size

Indexing Time

RooCode

40k LOC

2.2 min

CodeFlow

40k LOC

8.6s

Requirements

Before running CodeFlow, ensure you have Python 3.8+ and the following dependencies installed:

chromadb sentence-transformers mcp[cli] pyyaml watchdog>=2.0 pytest pytest-asyncio pydantic

Installation

From Source

Clone the repository and install dependencies:

git clone https://github.com/yourusername/codeflow.git cd codeflow pip install -e .

This will install the package in editable mode and make both the CLI tool and MCP server available.

CLI Tool

The CLI tool is available as a module:

python -m code_flow_graph.cli.code_flow_graph --help

MCP Server

The MCP server is available as a script:

code_flow_graph_mcp_server --help

Usage

CLI Tool

The code_flow_graph.cli.code_flow_graph module is the main entry point for command-line analysis. All commands start with:

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY]

Replace [YOUR_CODE_DIRECTORY] with the path to your project. If omitted, the current directory (.) will be used.

1. Analyze a Codebase and Generate a Report

This command will parse your codebase, build the call graph, populate the ChromaDB vector store (persisted in <YOUR_CODE_DIRECTORY>/code_vectors_chroma/), and generate a JSON report. Language detection is automatic.

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY] --output my_analysis_report.json

2. Querying the Codebase (Analysis + Query)

Run a full analysis and then immediately perform a semantic search. This will update the vector store if code has changed.

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY] --query "functions that handle user authentication"

3. Querying an Existing Analysis (Query Only)

Once a codebase has been analyzed (i.e., the code_vectors_chroma/ directory exists in [YOUR_CODE_DIRECTORY]), you can query it much faster without re-running the full analysis:

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY] --no-analyze --query "functions related to data serialization"

4. Generating Mermaid Call Graphs

You can generate Mermaid diagrams of the call graph for functions relevant to your query.

Standard Mermaid (for visual rendering):

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY] --query "database connection pooling" --mermaid

The output is Mermaid syntax, which can be copied into a Mermaid viewer (e.g., VS Code extension, Mermaid.live) for visualization.

LLM-Optimized Mermaid (for AI agents):

python -m code_flow_graph.cli.code_flow_graph [YOUR_CODE_DIRECTORY] --query "main entry point setup" --llm-optimized

This output is stripped of visual styling and uses short aliases for node IDs, with explicit %% Alias: ShortID = Fully.Qualified.Name comments. This minimizes token count for LLMs while providing all necessary structural information.

Command Line Arguments

  • <directory>: (Positional, optional) Path to the codebase directory. If provided, overrides watch_directories in config. If not provided, uses watch_directories from config or defaults to current directory.

  • --config: Path to configuration YAML file (default: codeflow.config.yaml).

  • --output: Output file for the analysis report (default: code_analysis_report.json). Only used during full analysis.

  • --query <QUESTION>: Perform a semantic query.

  • --no-analyze: (Flag) Skips AST extraction and graph building. Requires --query. Assumes an existing vector store.

  • --mermaid: (Flag) Generates a Mermaid graph for query results. Requires --query.

  • --llm-optimized: (Flag) Generates Mermaid graph optimized for LLM token count (removes styling). Implies --mermaid.

  • --embedding-model: Embedding model to use. Shortcuts: fast (384-dim), medium (384-dim), or accurate (768-dim). Default: fast. See Embedding Model Configuration for details.

  • --max-tokens: Maximum tokens per chunk for embedding model. Default: 256. Increase for larger context windows (must match model max sequence length).

Example Report Output

The code_analysis_report.json provides a comprehensive JSON structure including a summary, identified entry points, class summaries, and a detailed call graph (functions with all metadata, and edges).

MCP Server

The MCP server provides programmatic access to CodeFlow's analysis capabilities through the Model Context Protocol. It can be integrated with AI assistants, IDEs, and other MCP-compatible tools.

Starting the Server

Start the MCP server with default configuration:

python -m code_flow_graph.mcp_server

Or with a custom configuration file:

python -m code_flow_graph.mcp_server --config path/to/config.yaml

Note: The server looks for codeflow.config.yaml in the current directory by default.

Background Analysis: The server starts immediately and accepts connections while analyzing the codebase in the background. During the initial analysis, tools may return empty or partial results as the codebase is being indexed. This is normal behavior for first-time scans. Use the ping tool to check analysis progress.

Available Tools

The server exposes the following tools through the MCP protocol:

  • ping: Test server connectivity and check analysis status. Returns current analysis state (not_started, in_progress, completed, failed) and count of indexed functions.

  • semantic_search: Search functions semantically using natural language queries. Includes analysis status in response.

  • get_call_graph: Retrieve call graph in JSON or Mermaid format. Includes analysis status in response.

  • get_function_metadata: Get detailed metadata for a specific function. Includes analysis status in response.

  • query_entry_points: Get all identified entry points in the codebase. Includes analysis status in response.

  • generate_mermaid_graph: Generate Mermaid diagram for call graph visualization. Includes analysis status in response.

  • cleanup_stale_references: Manually trigger cleanup of stale file references in the vector store

  • update_context: Update session context with key-value pairs

  • get_context: Retrieve current session context

Note: All analysis-dependent tools include an analysis_status field in their responses to inform clients about the current state of code analysis.

Testing with Client

Use the included client to test server functionality:

python client.py

This performs a handshake and tests basic tool functionality.

Configuration

Configuration

Both the CLI tool and MCP server share a central configuration system. The default configuration file is codeflow.config.yaml in the current working directory.

watch_directories: ["."] # Directories to analyze (default: current directory) ignored_patterns: ["venv", "**/__pycache__", ".git", "node_modules"] # Patterns to ignore chromadb_path: "./code_vectors_chroma" # Path to ChromaDB vector store max_graph_depth: 3 # Maximum depth for graph traversal embedding_model: "all-MiniLM-L6-v2" # Embedding model to use max_tokens: 256 # Maximum tokens per chunk language: "python" # Default language ("python" or "typescript")

Customize these settings by creating your own config file and passing it with --config.

Embedding Model Configuration

CodeFlow uses SentenceTransformers for semantic code search. You can choose between different embedding models to balance speed and accuracy:

Available Models

Shorthand

Model Name

Dimensions

Speed

Use Case

fast

all-MiniLM-L6-v2

384

Fastest

Quick analysis, smaller codebases

medium

all-MiniLM-L12-v2

384

Balanced

Good balance of speed and quality

accurate

all-mpnet-base-v2

768

Slower

Detailed analysis, larger codebases

CLI Configuration

Use the --embedding-model flag with either a shorthand or specific model name:

# Using shorthand (recommended) python -m code_flow_graph.cli.code_flow_graph . --embedding-model fast python -m code_flow_graph.cli.code_flow_graph . --embedding-model accurate # Using specific model name python -m code_flow_graph.cli.code_flow_graph . --embedding-model all-MiniLM-L6-v2

Adjust chunk size with --max-tokens (default: 256):

# Note: all models have max sequence length of 384 tokens python -m code_flow_graph.cli.code_flow_graph . --embedding-model accurate --max-tokens 384

MCP Server Configuration

Configure in your YAML config file:

# Fast configuration (default) embedding_model: "all-MiniLM-L6-v2" max_tokens: 256 # Accurate configuration (max sequence length is 384) embedding_model: "all-mpnet-base-v2" max_tokens: 384

Important Notes

  • Consistency: Once a vector store is created with a specific embedding dimension (384 or 768), you must continue using models with the same dimension. CodeFlow will automatically detect and use the existing dimension.

  • Performance: 384-dim models are ~2x faster than 768-dim models with minimal accuracy loss for code search.

  • Custom Models: You can specify any SentenceTransformer model name. See the full list.

Meta-RAG: LLM-Driven Code Summaries (Optional)

CodeFlow supports optional LLM-driven semantic code summaries to enhance context retrieval for AI agents. This feature generates concise, natural-language summaries of functions and classes that are indexed alongside the code, enabling more efficient and accurate semantic search.

Configuration

Enable summary generation in your codeflow.config.yaml:

# Summary Generation (Meta-RAG) summary_generation_enabled: false # Set to true to enable llm_config: api_key_env_var: "OPENAI_API_KEY" base_url: "https://openrouter.ai/api/v1" # Default: OpenRouter model: "x-ai/grok-4.1-fast" # Default model max_tokens: 256 # Max tokens in LLM response per summary concurrency: 5 # Number of parallel summary generation workers # Smart filtering to reduce costs min_complexity: 3 # Only summarize functions with complexity >= 3 min_nloc: 5 # Only summarize functions with >= 5 lines of code skip_private: true # Skip functions starting with _ (private) skip_test: true # Skip test functions (test_*, *_test) prioritize_entry_points: true # Summarize entry points first # Depth control summary_depth: "standard" # "minimal", "standard", "detailed" max_input_tokens: 2000 # Truncate function body if longer

Smart Filtering Options:

  • min_complexity: Only summarize functions with cyclomatic complexity >= threshold (default: 0)

  • min_nloc: Only summarize functions with >= N lines of code (default: 0)

  • skip_private: Skip private functions - supports both Python (_prefix) and TypeScript (private/protected modifiers) (default: false)

  • skip_test: Skip test functions (names containing "test") (default: false)

  • prioritize_entry_points: Process entry points first (default: false)

Depth Control:

  • minimal: Just name, signature, and code (lowest cost)

  • standard: Adds docstring (balanced)

  • detailed: Includes complexity, NLOC, decorators (highest quality)

Token Limits:

  • max_tokens: Maximum tokens in LLM response (controls summary length)

  • max_input_tokens: Truncate function body if longer (controls input cost)

Environment Variables

You can override configuration via environment variables:

  • OPENAI_API_KEY: Your LLM API key (required when summary generation is enabled)

  • OPENAI_BASE_URL: Override the base URL (default: https://openrouter.ai/api/v1)

  • OPENAI_SUMMARY_MODEL: Override the model (default: x-ai/grok-4.1-fast)

How It Works

  1. Background Processing: Summaries are generated asynchronously in the background after code analysis completes

  2. Resumable: On restart, CodeFlow automatically identifies and generates summaries for any functions missing them

  3. Parallel Generation: Multiple LLM requests run concurrently (configurable via concurrency)

  4. Retrieval: Summaries are returned via the get_function_metadata tool and included in semantic search results

Example Usage

# Enable in config, then start MCP server export OPENAI_API_KEY="your-api-key" python -m code_flow_graph.mcp_server # Summaries will be generated in the background # Check progress with the ping tool

Cost Considerations

  • Summary generation incurs LLM API costs (typically $0.001-0.01 per function depending on model)

  • The feature is disabled by default to avoid unexpected costs

  • Use faster, cheaper models like grok-4.1-fast for cost-effective summarization

  • Summaries are cached in ChromaDB and only regenerated when code changes

TypeScript Support

CodeFlow provides comprehensive TypeScript analysis capabilities with feature parity to Python support. It can analyze TypeScript applications, extract detailed metadata, and build call graphs for various TypeScript frameworks.

Requirements

TypeScript analysis is performed using regex-based parsing with no external dependencies required. All TypeScript language features are supported through sophisticated pattern matching.

Usage Examples

Basic TypeScript Analysis

# Analyze a TypeScript project (language detection is automatic) python -m code_flow_graph.cli.code_flow_graph /path/to/typescript/project --output analysis.json # Query TypeScript codebase python -m code_flow_graph.cli.code_flow_graph /path/to/typescript/project --query "user authentication functions"

Framework-Specific Examples

Angular Application Analysis:

# Analyze Angular project (language detection automatic) python -m code_flow_graph.cli.code_flow_graph /path/to/angular-app --query "component lifecycle methods" # Find Angular services python -m code_flow_graph.cli.code_flow_graph /path/to/angular-app --query "injectable services"

NestJS Application Analysis:

# Analyze NestJS backend (language detection automatic) python -m code_flow_graph.cli.code_flow_graph /path/to/nestjs-app --query "controller endpoints" # Find service dependencies python -m code_flow_graph.cli.code_flow_graph /path/to/nestjs-app --query "database service dependencies"

React TypeScript Analysis:

# Analyze React TypeScript components (language detection automatic) python -m code_flow_graph.cli.code_flow_graph /path/to/react-ts-app --query "custom hooks" # Find component prop types python -m code_flow_graph.cli.code_flow_graph /path/to/react-ts-app --query "component interfaces"

TypeScript-Specific Features

Type System Analysis:

  • Interface Detection: Identifies and extracts TypeScript interfaces and their implementations

  • Type Annotations: Analyzes function parameters and return types

  • Generic Types: Handles generic type definitions and constraints

  • Union/Intersection Types: Processes complex type definitions

  • Decorator Analysis: Detects Angular, NestJS, and custom decorators

Framework Pattern Recognition:

  • Angular: Component, Service, Module, Directive decorators

  • NestJS: Controller, Injectable, Module decorators

  • Express: Route handlers and middleware detection

  • React: Component classes and hooks detection

TypeScript Configuration

The tool automatically detects and parses tsconfig.json for project structure information:

{ "compilerOptions": { "target": "ES2020", "module": "commonjs", "strict": true, "esModuleInterop": true, "skipLibCheck": true, "forceConsistentCasingInFileNames": true }, "include": ["src/**/*"], "exclude": ["node_modules", "dist"] }

Supported File Types:

  • .ts - TypeScript files

  • .tsx - TypeScript React/JSX files

Parsing Strategy

CodeFlow uses sophisticated regex-based parsing for TypeScript analysis, providing comprehensive support for:

  • Type annotations and generics

  • Classes, interfaces, and enums

  • Decorators and access modifiers

  • Framework patterns (Angular, React, NestJS, Express)

  • Import/export analysis

Examples

CLI Tool Examples

Basic Analysis

# Analyze current directory and generate report (language detection automatic) python -m code_flow_graph.cli.code_flow_graph . --output analysis.json # Analyze a specific project python -m code_flow_graph.cli.code_flow_graph /path/to/my/project
# Find authentication functions python -m code_flow_graph.cli.code_flow_graph . --query "user authentication login" # Search for database operations python -m code_flow_graph.cli.code_flow_graph . --query "database queries CRUD operations"

Visualization

# Generate Mermaid diagram for API endpoints python -m code_flow_graph.cli.code_flow_graph . --query "API endpoints" --mermaid # LLM-optimized graph for AI analysis python -m code_flow_graph.cli.code_flow_graph . --query "error handling" --llm-optimized

MCP Server Examples

{ "tool": "semantic_search", "input": { "query": "functions that handle user authentication", "n_results": 5, "filters": {} } }

Get Function Metadata

{ "tool": "get_function_metadata", "input": { "fqn": "myapp.auth.authenticate_user" } }

Generate Call Graph

{ "tool": "get_call_graph", "input": { "fqns": ["myapp.main"], "format": "mermaid" } }

Update Context

{ "tool": "update_context", "input": { "current_focus": "authentication_module", "analysis_depth": "detailed" } }

Testing

MCP Server Tests

Run the MCP server test suite:

pytest tests/mcp_server/

This includes tests for:

  • Server initialization and tool registration

  • Tool functionality (semantic search, call graphs, etc.)

  • Configuration loading

  • File watching and incremental updates

CLI Tool Testing

Test the CLI tool by running analysis on the test files:

# Test basic functionality python -m code_flow_graph.cli.code_flow_graph tests/ --output test_report.json # Test querying python -m code_flow_graph.cli.code_flow_graph tests/ --query "test functions"

Integration Testing

Use the client script for end-to-end testing:

python client.py

This tests the MCP protocol handshake and basic tool interactions.

Unified API

For programmatic access, CodeFlow provides a unified interface that automatically detects and analyzes both Python and TypeScript codebases:

from code_flow_graph.core import create_extractor, extract_from_file, extract_from_directory, get_language_from_extension # Create appropriate extractor based on file type (automatic language detection) extractor = create_extractor('myfile.ts') # Returns TypeScriptASTExtractor extractor = create_extractor('myfile.py') # Returns PythonASTExtractor # Single API for both languages elements = extract_from_file('myfile.ts') # Works for TypeScript elements = extract_from_file('myfile.py') # Works for Python # Directory processing with automatic language detection elements = extract_from_directory('./src') # Processes all Python and TypeScript files # Manual language detection language = get_language_from_extension('file.ts') # Returns 'typescript' language = get_language_from_extension('file.py') # Returns 'python'

The unified interface provides:

  • Automatic Language Detection: No need to manually specify Python vs TypeScript

  • Factory Pattern: create_extractor() returns appropriate extractor for file type

  • Consistent API: Same functions work for both languages

  • Clean Abstraction: Hides complexity of modular structure underneath

Architecture

The tool is structured into four main components, designed for clarity and maintainability:

Core Components

  1. Unified Interface (core/__init__.py)

    • Provides a single API for both Python and TypeScript codebases.

    • Factory functions for automatic language detection and extractor creation.

    • Simplifies usage by hiding complexity of modular structure.

  2. AST Extractor (core/ast_extractor.py)

    • Parses source code into Abstract Syntax Trees.

    • Extracts rich metadata for FunctionElement and ClassElement objects (complexity, decorators, dependencies, etc.).

    • Filters files based on .gitignore for relevant analysis.

  3. Call Graph Builder (core/call_graph_builder.py)

    • Constructs a directed graph of function calls based on extracted AST data.

    • Identifies application entry points using multiple heuristics.

    • Provides structured FunctionNode and CallEdge objects, containing the rich metadata.

  4. Vector Store (core/vector_store.py)

    • Integrates with ChromaDB for a persistent, queryable knowledge base.

    • Stores semantic embeddings of functions and edges, along with their detailed metadata.

    • Enables semantic search (query_functions) and efficient updates via source code hashing.

MCP Server Architecture

  • Server (mcp_server/server.py): MCP SDK-based server handling MCP protocol and tool registration.

  • Analyzer (mcp_server/analyzer.py): Core analysis logic with file watching for incremental updates.

  • Tools (mcp_server/tools.py): MCP tool implementations with request/response models.

  • Configuration (mcp_server/config/): YAML-based configuration management.

CLI Tool Architecture

  • CodeGraphAnalyzer (cli/code_flow_graph.py): Main orchestrator for analysis pipeline.

  • Command-line argument parsing and output formatting.

  • Integration with core components for analysis and querying.

Contributing

We welcome contributions! Please refer to the Contributing Guide (or similar if you create one) for details on how to get involved.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Roadmap

  • Enhanced TypeScript parsing and feature parity with Python.

  • Advanced data flow analysis (beyond simple local variables).

  • Integration with other visualization tools (e.g., Graphviz).

  • More sophisticated entry point detection for various frameworks.

  • Direct IDE integrations for real-time analysis and navigation.

  • Support for other programming languages.

  • Web-based UI for interactive code exploration.

  • Plugin system for custom analysis rules.

Recently Completed

  • Unified Interface Module: Single API for automatic Python and TypeScript detection and analysis

  • Factory Functions: create_extractor() and get_language_from_extension() for simplified usage

  • Unified Interface Module: Single API for automatic Python and TypeScript detection and analysis

  • Factory Functions: create_extractor() and get_language_from_extension() for simplified usage

  • Backward Compatibility: Existing code continues to work with new modular structure

  • Structured Data Indexing: Support for JSON and YAML configuration files with semantic search

Acknowledgments

This project is built upon the excellent work of:

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mrorigo/code-flow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server