Architecture Overview
┌─────────────┐ MCP Protocol ┌──────────────────┐ OAuth ┌─────────────────┐
│ Claude │ ◄─────────────────────► │ dba-mcp-proxy │ ◄──────────────────► │ Databricks App │
│ CLI │ (stdio/JSON-RPC) │ (local process) │ (HTTPS/SSE) │ (MCP Server) │
└─────────────┘ └──────────────────┘ └─────────────────┘
▲ │
│ ▼
└────────── Databricks OAuth ──────► Workspace APIs
Databricks MCP Server
Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace.
What is this?
This template lets you create an MCP server that runs on Databricks Apps. You can:
A bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.
Components
MCP Server (server/app.py): A FastAPI app with integrated MCP server that:
Dynamically loads prompts from prompts/*.md files
Exposes Python functions as MCP tools via @mcp_server.tool decorator
Handles both HTTP requests and MCP protocol over Server-Sent Events
Prompts (prompts/): Simple markdown files where:
Filename = prompt name (e.g., check_system.md → check_system prompt)
First line with # = description
File content = what gets returned to Claude
Local Proxy (dba_mcp_proxy/): Authenticates and proxies MCP requests:
Handles Databricks OAuth authentication automatically
Translates between Claude's stdio protocol and HTTP/SSE
Works with both local development and deployed apps
Prerequisites
Local Development
# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh
# Start dev server
./watch.sh
# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000" # Local dev server
# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
uvx --from git+ssh://git@github.com/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
## Customization Guide
This template uses [FastMCP](https://github.com/jlowin/fastmcp), a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:
- **`@mcp_server.prompt`** - For registering prompts that return text
- **`@mcp_server.tool`** - For registering tools that execute functions
### Adding Prompts
The easiest way is to create a markdown file in the `prompts/` directory:
```markdown
# Get cluster information
List all available clusters in the workspace with their current status
The prompt will be automatically loaded with:
Name: filename without extension (e.g., get_clusters.md → get_clusters)
Description: first line after #
Content: entire file content
Alternatively, you can register prompts as functions in server/app.py:
@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
# This can include dynamic logic, API calls, etc.
w = get_workspace_client()
current_user = w.current_user.me()
return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"
We auto-load prompts/ for convenience, but function-based prompts are useful when you need dynamic content.
Adding Tools
Add a function in server/app.py using the @mcp_server.tool decorator:
@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
"""List Databricks clusters by status."""
w = get_workspace_client()
clusters = []
for cluster in w.clusters.list():
if cluster.state.name == status:
clusters.append({
"id": cluster.cluster_id,
"name": cluster.cluster_name,
"state": cluster.state.name
})
return {"clusters": clusters}
Tools must:
Use the @mcp_server.tool decorator
Have a docstring (becomes the tool description)
Return JSON-serializable data (dict, list, str, etc.)
Accept only JSON-serializable parameters
Deployment
# Deploy to Databricks Apps
./deploy.sh
# Check status and get your app URL
./app_status.sh
Your MCP server will be available at https://your-app.databricksapps.com/mcp/
The app_status.sh script will show your deployed app URL, which you'll need for the DATABRICKS_APP_URL environment variable when adding the MCP server to Claude.
Authentication
Examples
Using with Claude
Once added, you can interact with your MCP server in Claude:
Human: What prompts are available?
Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity
Sample Tool Usage
Human: Can you execute a SQL query to show databases?
Claude: I'll execute that SQL query for you using the execute_dbsql tool.
[Executes SQL and returns results]
Project Structure
├── server/ # FastAPI backend with MCP server
│ ├── app.py # Main application + MCP tools
│ └── routers/ # API endpoints
├── prompts/ # MCP prompts (markdown files)
│ ├── check_system.md
│ ├── list_files.md
│ └── ping_google.md
├── dba_mcp_proxy/ # MCP proxy for Claude CLI
│ └── mcp_client.py # OAuth + proxy implementation
├── client/ # React frontend (optional)
├── scripts/ # Development tools
└── pyproject.toml # Python package configuration
Advanced Usage
Environment Variables
Configure in .env.local:
DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id # For SQL tools
Creating Complex Tools
Tools can access the full Databricks SDK:
@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
"""Create a Databricks job."""
w = get_workspace_client()
job = w.jobs.create(
name=name,
tasks=[{
"task_key": "main",
"notebook_task": {"notebook_path": notebook_path},
"existing_cluster_id": cluster_id
}]
)
return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}
Testing Your MCP Server
This template includes comprehensive testing tools for validating MCP functionality at multiple levels.
Quick Verification
After adding the MCP server to Claude, verify it's working:
# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude
# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude
Comprehensive Testing Suite
The claude_scripts/ directory contains 6 testing tools for thorough MCP validation:
Command Line Tests
# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh # MCP proxy client tests
# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh # Full end-to-end MCP proxy tests
Interactive Web UI Tests
# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh # Local server web interface
./claude_scripts/inspect_remote_mcp.sh # Remote server web interface