# Databricks APIs Documentation
This directory contains documentation for calling Databricks APIs directly using the Databricks SDK, without wrapper utilities.
## Overview
The Databricks SDK provides direct access to all Databricks APIs. This documentation shows you how to call these APIs directly in your FastAPI application.
## Authentication
All APIs use the same authentication configured in your app:
```python
from databricks.sdk import WorkspaceClient
# Automatically uses your configured authentication
client = WorkspaceClient()
```
## API Categories
### [Databricks SDK](databricks_sdk.md)
- Comprehensive SDK usage patterns
- Authentication and configuration
- Core APIs overview
- FastAPI integration examples
### [Workspace APIs](workspace_apis.md)
- File operations (upload, download, list)
- Directory management
- Notebook operations
- Search and metadata
### [MLflow GenAI](mlflow_genai.md)
- AI agent tracing and observability
- Automated quality evaluation
- Feedback and continuous improvement
- Application lifecycle management
### [Model Serving](model_serving.md)
- List and inspect serving endpoints
- Query serving endpoints
- Batch inference
- Error handling and best practices
## Common Patterns
### Error Handling
```python
from databricks.sdk.errors import DatabricksError
try:
result = client.workspace.get_status('/path/to/file')
except DatabricksError as e:
print(f"API Error: {e}")
```
### Pagination
```python
# Most list operations support pagination
for cluster in client.clusters.list():
print(f"Cluster: {cluster.cluster_name}")
```
### Async Operations
```python
# Many operations are async - wait for completion
cluster_id = client.clusters.create(...)
client.clusters.wait_get_cluster_running(cluster_id)
```
## SDK Documentation
- [Databricks SDK Python Documentation](https://databricks-sdk-py.readthedocs.io/en/latest/)
- [Databricks REST API Reference](https://docs.databricks.com/api/workspace/introduction)
- [SDK Examples](https://github.com/databricks/databricks-sdk-py/tree/main/examples)
## Best Practices
1. **Reuse the client**: Create one `WorkspaceClient` instance per application
2. **Handle errors**: Always wrap API calls in try-catch blocks
3. **Use pagination**: Don't assume all results fit in one response
4. **Check permissions**: Verify user has required permissions for operations
5. **Log API calls**: Add logging for debugging and monitoring
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/moma1992/mcp-databricks-app'
If you have feedback or need assistance with the MCP directory API, please join our Discord server