Skip to main content
Glama

Gemini MCP Server

by mintmcqueen

batch_ingest_embeddings

Process content files to extract text and format them for batch embedding generation. Analyzes various file formats, extracts text content, and creates JSONL files ready for embedding creation with specified task types.

Instructions

EMBEDDINGS CONTENT INGESTION - Specialized ingestion for embeddings batch processing. WORKFLOW: 1) Analyzes content structure, 2) Extracts text for embedding, 3) Formats as JSONL with proper embedContent structure including task_type, 4) Validates format. OPTIMIZED FOR: Text extraction from various formats (CSV columns, JSON fields, TXT lines, MD sections). RETURNS: JSONL file ready for batch_create_embeddings with task_type embedded in each request.

Input Schema

NameRequiredDescriptionDefault
inputFileYesPath to content file
outputFileNoOptional output JSONL path
textFieldNoFor CSV/JSON: field name containing text to embed (auto-detected if not provided)
taskTypeYesEmbedding task type (RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY, CLASSIFICATION, CLUSTERING, RETRIEVAL_QUERY, CODE_RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION). Use batch_query_task_type if unsure.

Input Schema (JSON Schema)

{ "properties": { "inputFile": { "description": "Path to content file", "type": "string" }, "outputFile": { "description": "Optional output JSONL path", "type": "string" }, "taskType": { "description": "Embedding task type (RETRIEVAL_DOCUMENT, SEMANTIC_SIMILARITY, CLASSIFICATION, CLUSTERING, RETRIEVAL_QUERY, CODE_RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION). Use batch_query_task_type if unsure.", "type": "string" }, "textField": { "description": "For CSV/JSON: field name containing text to embed (auto-detected if not provided)", "type": "string" } }, "required": [ "inputFile", "taskType" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mintmcqueen/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server