Skip to main content
Glama

Gemini MCP Server

An MCP Server that provides access to the Gemini Suite.

✨ Features

  • Support for 1.5 through 2.5 pro

  • Nano Banana

  • Embeddings

  • File Upload

  • Batch (NLP and Embeddings)

🚀 Quick Start

Option 1: NPX (No Install Required)

claude mcp add gemini -s user --env GEMINI_API_KEY=YOUR_KEY_HERE -- npx -y @mintmcqueen/gemini-mcp@latest

Option 2: Global Install

# Install globally npm install -g @mintmcqueen/gemini-mcp # Add to Claude Code claude mcp add gemini -s user --env GEMINI_API_KEY=YOUR_KEY_HERE -- gemini-mcp

Option 3: Local Project Install

# Install in your project npm install @mintmcqueen/gemini-mcp # Add to Claude Code (adjust path as needed) claude mcp add gemini -s project --env GEMINI_API_KEY=YOUR_KEY_HERE -- node node_modules/@mintmcqueen/gemini-mcp/build/index.js

After any installation method, restart Claude Code and you're ready to use Gemini.

Shell Environment

  • File: ~/.zshrc or ~/.bashrc

  • Format: export GEMINI_API_KEY="your-key-here"

Usage

MCP Tools

The server provides the following tools:

chat

Send a message to Gemini with optional file attachments.

Parameters:

  • message (required): The message to send

  • model (optional): Model to use (gemini-2.5-pro, gemini-2.5-flash, gemini-2.5-flash-lite)

  • files (optional): Array of files with base64 encoded data

  • temperature (optional): Controls randomness (0.0-2.0)

  • maxTokens (optional): Maximum response tokens

  • conversationId (optional): Continue an existing conversation

start_conversation

Start a new conversation session.

Parameters:

  • id (optional): Custom conversation ID

clear_conversation

Clear a conversation session.

Parameters:

  • id (required): Conversation ID to clear

generate_images

Generate images from text prompts or edit existing images using Gemini 2.5 Flash Image model.

Parameters:

  • prompt (required): Text description of image to generate or editing instructions

  • aspectRatio (optional): Image aspect ratio - 1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9 (default: 1:1)

  • numImages (optional): Number of images to generate, 1-4 (default: 1). Note: Makes sequential API calls, ~10-15s per image.

  • inputImageUri (optional): File URI from uploaded file for image editing (omit for text-to-image generation)

  • outputDir (optional): Directory to save generated images (default: ./generated-images)

  • temperature (optional): Controls randomness (0.0-2.0, default: 1.0)

Returns:

  • Array of generated images with file paths and base64 data

  • Token usage (~1,290-1,300 tokens per image)

  • All images include SynthID watermark

Performance Note: The Gemini API generates one image per request. When numImages > 1, the tool makes multiple sequential API calls to generate the requested number of images. Expect ~10-15 seconds per image.

Text-to-Image Example:

generate_images({ prompt: "A photorealistic coffee cup on a wooden table", aspectRatio: "16:9", numImages: 2 }) // Generates 2 images saved to ./generated-images/

Image Editing Example:

// First, upload the image to edit upload_file({ filePath: "./photo.jpg" }) // Returns: { uri: "files/abc123" } // Then edit it generate_images({ prompt: "Add a wizard hat to the subject", inputImageUri: "files/abc123" }) // Generates edited image saved to ./generated-images/

🆕 Batch API Tools (v0.3.0)

Process large-scale tasks asynchronously at 50% cost with ~24 hour turnaround.

Content Generation

Simple (Automated):

// One-call solution: Ingest → Upload → Create → Poll → Download batch_process({ inputFile: "prompts.csv", // CSV, JSON, TXT, or MD model: "gemini-2.5-flash" }) // Returns: Complete results with metadata

Advanced (Manual Control):

// 1. Convert your file to JSONL batch_ingest_content({ inputFile: "prompts.csv" }) // Returns: { outputFile: "prompts.jsonl", requestCount: 100 } // 2. Upload JSONL upload_file({ filePath: "prompts.jsonl" }) // Returns: { uri: "files/abc123" } // 3. Create batch job batch_create({ inputFileUri: "files/abc123", model: "gemini-2.5-flash" }) // Returns: { batchName: "batches/xyz789" } // 4. Monitor progress batch_get_status({ batchName: "batches/xyz789", autoPoll: true // Wait until complete }) // Returns: { state: "SUCCEEDED", stats: {...} } // 5. Download results batch_download_results({ batchName: "batches/xyz789" }) // Returns: { results: [...], outputFile: "results.json" }

Embeddings

Simple (Automated):

// One-call solution with automatic task type prompting batch_process_embeddings({ inputFile: "documents.txt", // taskType optional - will prompt if not provided }) // Returns: 1536-dimensional embeddings array

Advanced (Manual Control):

// 1. Select task type (if unsure) batch_query_task_type({ context: "Building a search engine" }) // Returns: { selectedTaskType: "RETRIEVAL_DOCUMENT", recommendation: {...} } // 2. Ingest content for embeddings batch_ingest_embeddings({ inputFile: "documents.txt" }) // Returns: { outputFile: "documents.embeddings.jsonl" } // 3-5. Same as content generation workflow // 6. Results contain 1536-dimensional vectors

Task Types (8 options):

  • SEMANTIC_SIMILARITY - Compare text similarity

  • CLASSIFICATION - Categorize content

  • CLUSTERING - Group similar items

  • RETRIEVAL_DOCUMENT - Build search indexes

  • RETRIEVAL_QUERY - Search queries

  • CODE_RETRIEVAL_QUERY - Code search

  • QUESTION_ANSWERING - Q&A systems

  • FACT_VERIFICATION - Fact-checking

Job Management

// Cancel running job batch_cancel({ batchName: "batches/xyz789" }) // Delete completed job batch_delete({ batchName: "batches/xyz789" })

Supported Input Formats:

  • CSV (converts rows to requests)

  • JSON (wraps objects as requests)

  • TXT (splits lines as requests)

  • MD (markdown sections as requests)

  • JSONL (ready to use)

MCP Resources

gemini://models/available

Information about available Gemini models and their capabilities.

gemini://conversations/active

List of active conversation sessions with metadata.

🔧 Development

npm run build # Build TypeScript npm run watch # Watch mode npm run dev # Build + auto-restart npm run inspector # Debug with MCP Inspector

Connection Failures

If Claude Code fails to connect:

  1. Verify your API key is correct

  2. Check that the command path is correct (for local installs)

  3. Restart Claude Code after configuration changes

🔒 Security

  • API keys are never logged or echoed

  • Files created with 600 permissions (user read/write only)

  • Masked input during key entry

  • Real API validation before storage

🤝 Contributing

Contributions are welcome! This package is designed to be production-ready with:

  • Full TypeScript types

  • Comprehensive error handling

  • Automatic retry logic

  • Real API validation

📄 License

MIT - see LICENSE file

🙋 Support

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mintmcqueen/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server