Skip to main content
Glama

Qdrant MCP Server

CI codecov

A Model Context Protocol (MCP) server providing semantic search capabilities using Qdrant vector database with multiple embedding providers.

Features

  • Zero Setup: Works out of the box with Ollama - no API keys required

  • Privacy-First: Local embeddings and vector storage - data never leaves your machine

  • Code Vectorization: Intelligent codebase indexing with AST-aware chunking and semantic code search

  • Multiple Providers: Ollama (default), OpenAI, Cohere, and Voyage AI

  • Hybrid Search: Combine semantic and keyword search for better results

  • Semantic Search: Natural language search with metadata filtering

  • Incremental Indexing: Efficient updates - only re-index changed files

  • Configurable Prompts: Create custom prompts for guided workflows without code changes

  • Rate Limiting: Intelligent throttling with exponential backoff

  • Full CRUD: Create, search, and manage collections and documents

  • Flexible Deployment: Run locally (stdio) or as a remote HTTP server

Quick Start

Prerequisites

  • Node.js 20+

  • Docker and Docker Compose

Installation

# Clone and install git clone https://github.com/mhalder/qdrant-mcp-server.git cd qdrant-mcp-server npm install # Start services and pull model docker compose up -d docker exec ollama ollama pull nomic-embed-text # Build npm run build

Configuration

Local Setup (stdio transport)

Add to ~/.claude/claude_code_config.json:

{ "mcpServers": { "qdrant": { "command": "node", "args": ["/path/to/qdrant-mcp-server/build/index.js"], "env": { "QDRANT_URL": "http://localhost:6333", "EMBEDDING_BASE_URL": "http://localhost:11434" } } } }

Remote Setup (HTTP transport)

⚠️ Security Warning: When deploying the HTTP transport in production:

  • Always run behind a reverse proxy (nginx, Caddy) with HTTPS

  • Implement authentication/authorization at the proxy level

  • Use firewalls to restrict access to trusted networks

  • Never expose directly to the public internet without protection

  • Consider implementing rate limiting at the proxy level

  • Monitor server logs for suspicious activity

Start the server:

TRANSPORT_MODE=http HTTP_PORT=3000 node build/index.js

Configure client:

{ "mcpServers": { "qdrant": { "url": "http://your-server:3000/mcp" } } }

Using a different provider:

"env": { "EMBEDDING_PROVIDER": "openai", // or "cohere", "voyage" "OPENAI_API_KEY": "sk-...", // provider-specific API key "QDRANT_URL": "http://localhost:6333" }

Restart after making changes.

See Advanced Configuration section below for all options.

Tools

Collection Management

Tool

Description

create_collection

Create collection with specified distance metric (Cosine/Euclid/Dot)

list_collections

List all collections

get_collection_info

Get collection details and statistics

delete_collection

Delete collection and all documents

Document Operations

Tool

Description

add_documents

Add documents with automatic embedding (supports string/number IDs, metadata)

semantic_search

Natural language search with optional metadata filtering

hybrid_search

Hybrid search combining semantic and keyword (BM25) search with RRF

delete_documents

Delete specific documents by ID

Code Vectorization

Tool

Description

index_codebase

Index a codebase for semantic code search with AST-aware chunking

search_code

Search indexed codebase using natural language queries

reindex_changes

Incrementally re-index only changed files (detects added/modified/deleted)

get_index_status

Get indexing status and statistics for a codebase

clear_index

Delete all indexed data for a codebase

Resources

  • qdrant://collections - List all collections

  • qdrant://collection/{name} - Collection details

Configurable Prompts

Create custom prompts tailored to your specific use cases without modifying code. Prompts provide guided workflows for common tasks.

Note: By default, the server looks for prompts.json in the project root directory. If the file exists, prompts are automatically loaded. You can specify a custom path using the PROMPTS_CONFIG_FILE environment variable.

Setup

  1. Create a prompts configuration file (e.g., prompts.json in the project root):

    See prompts.example.json for example configurations you can copy and customize.

  2. Configure the server (optional - only needed for custom path):

If you place prompts.json in the project root, no additional configuration is needed. To use a custom path:

{ "mcpServers": { "qdrant": { "command": "node", "args": ["/path/to/qdrant-mcp-server/build/index.js"], "env": { "QDRANT_URL": "http://localhost:6333", "PROMPTS_CONFIG_FILE": "/custom/path/to/prompts.json" } } } }
  1. Use prompts in your AI assistant:

Claude Code:

/mcp__qdrant__find_similar_docs papers "neural networks" 10

VSCode:

/mcp.qdrant.find_similar_docs papers "neural networks" 10

Example Prompts

See prompts.example.json for ready-to-use prompts including:

  • find_similar_docs - Semantic search with result explanation

  • setup_rag_collection - Create RAG-optimized collections

  • analyze_collection - Collection insights and recommendations

  • bulk_add_documents - Guided bulk document insertion

  • search_with_filter - Metadata filtering assistance

  • compare_search_methods - Semantic vs hybrid search comparison

  • collection_maintenance - Maintenance and cleanup workflows

  • migrate_to_hybrid - Collection migration guide

Template Syntax

Templates use {{variable}} placeholders:

  • Required arguments must be provided

  • Optional arguments use defaults if not specified

  • Unknown variables are left as-is in the output

Code Vectorization

Intelligently index and search your codebase using semantic code search. Perfect for AI-assisted development, code exploration, and understanding large codebases.

Features

  • AST-Aware Chunking: Intelligent code splitting at function/class boundaries using tree-sitter

  • Multi-Language Support: 35+ file types including TypeScript, Python, Java, Go, Rust, C++, and more

  • Incremental Updates: Only re-index changed files for fast updates

  • Smart Ignore Patterns: Respects .gitignore, .dockerignore, and custom .contextignore files

  • Semantic Search: Natural language queries to find relevant code

  • Metadata Filtering: Filter by file type, path patterns, or language

  • Local-First: All processing happens locally - your code never leaves your machine

Quick Start

1. Index your codebase:

# Via Claude Code MCP tool /mcp__qdrant__index_codebase /path/to/your/project

2. Search your code:

# Natural language search /mcp__qdrant__search_code /path/to/your/project "authentication middleware" # Filter by file type /mcp__qdrant__search_code /path/to/your/project "database schema" --fileTypes .ts,.js # Filter by path pattern /mcp__qdrant__search_code /path/to/your/project "API endpoints" --pathPattern src/api/**

3. Update after changes:

# Incrementally re-index only changed files /mcp__qdrant__reindex_changes /path/to/your/project

Usage Examples

Index a TypeScript Project

// The MCP tool automatically: // 1. Scans all .ts, .tsx, .js, .jsx files // 2. Respects .gitignore patterns (skips node_modules, dist, etc.) // 3. Chunks code at function/class boundaries // 4. Generates embeddings using your configured provider // 5. Stores in Qdrant with metadata (file path, line numbers, language) index_codebase({ path: "/workspace/my-app", forceReindex: false // Set to true to re-index from scratch }) // Output: // ✓ Indexed 247 files (1,823 chunks) in 45.2s

Search for Authentication Code

search_code({ path: "/workspace/my-app", query: "how does user authentication work?", limit: 5 }) // Results include file path, line numbers, and code snippets: // [ // { // filePath: "src/auth/middleware.ts", // startLine: 15, // endLine: 42, // content: "export async function authenticateUser(req: Request) { ... }", // score: 0.89, // language: "typescript" // }, // ... // ]

Search with Filters

// Only search TypeScript files search_code({ path: "/workspace/my-app", query: "error handling patterns", fileTypes: [".ts", ".tsx"], limit: 10 }) // Only search in specific directories search_code({ path: "/workspace/my-app", query: "API route handlers", pathPattern: "src/api/**", limit: 10 })

Incremental Re-indexing

// After making changes to your codebase reindex_changes({ path: "/workspace/my-app" }) // Output: // ✓ Updated: +3 files added, ~5 files modified, -1 files deleted // ✓ Chunks: +47 added, -23 deleted in 8.3s

Check Indexing Status

get_index_status({ path: "/workspace/my-app" }) // Output: // { // isIndexed: true, // collectionName: "code_a3f8d2e1", // chunksCount: 1823, // filesCount: 247, // lastUpdated: "2025-01-30T10:15:00Z", // languages: ["typescript", "javascript", "json"] // }

Supported Languages

Programming Languages (35+ file types):

  • Web: TypeScript, JavaScript, Vue, Svelte

  • Backend: Python, Java, Go, Rust, Ruby, PHP

  • Systems: C, C++, C#

  • Mobile: Swift, Kotlin, Dart

  • Functional: Scala, Clojure, Haskell, OCaml

  • Scripting: Bash, Shell, Fish

  • Data: SQL, GraphQL, Protocol Buffers

  • Config: JSON, YAML, TOML, XML, Markdown

See configuration for full list and customization options.

Custom Ignore Patterns

Create a .contextignore file in your project root to specify additional patterns to ignore:

# .contextignore **/test/** **/*.test.ts **/*.spec.ts **/fixtures/** **/mocks/** **/__tests__/**

Best Practices

  1. Index Once, Update Incrementally: Use index_codebase for initial indexing, then reindex_changes for updates

  2. Use Filters: Narrow search scope with fileTypes and pathPattern for better results

  3. Meaningful Queries: Use natural language that describes what you're looking for (e.g., "database connection pooling" instead of "db")

  4. Check Status First: Use get_index_status to verify a codebase is indexed before searching

  5. Local Embedding: Use Ollama (default) to keep everything local and private

Performance

Typical performance on a modern laptop (Apple M1/M2 or similar):

Codebase Size

Files

Indexing Time

Search Latency

Small (10k LOC)

50

~10s

<100ms

Medium (100k LOC)

500

~2min

<200ms

Large (500k LOC)

2,500

~10min

<500ms

Note: Indexing time varies based on embedding provider. Ollama (local) is fastest for initial indexing.

Examples

See examples/ directory for detailed guides:

Advanced Configuration

Environment Variables

Core Configuration

Variable

Description

Default

TRANSPORT_MODE

"stdio" or "http"

stdio

HTTP_PORT

Port for HTTP transport

3000

EMBEDDING_PROVIDER

"ollama", "openai", "cohere", "voyage"

ollama

QDRANT_URL

Qdrant server URL

http://localhost:6333

PROMPTS_CONFIG_FILE

Path to prompts configuration JSON

prompts.json

Embedding Configuration

Variable

Description

Default

EMBEDDING_MODEL

Model name

Provider-specific

EMBEDDING_BASE_URL

Custom API URL

Provider-specific

EMBEDDING_MAX_REQUESTS_PER_MINUTE

Rate limit

Provider-specific

EMBEDDING_RETRY_ATTEMPTS

Retry count

3

EMBEDDING_RETRY_DELAY

Initial retry delay (ms)

1000

OPENAI_API_KEY

OpenAI API key

-

COHERE_API_KEY

Cohere API key

-

VOYAGE_API_KEY

Voyage AI API key

-

Code Vectorization Configuration

Variable

Description

Default

CODE_CHUNK_SIZE

Maximum chunk size in characters

2500

CODE_CHUNK_OVERLAP

Overlap between chunks in characters

300

CODE_ENABLE_AST

Enable AST-aware chunking (tree-sitter)

true

CODE_BATCH_SIZE

Number of chunks to embed in one batch

100

CODE_CUSTOM_EXTENSIONS

Additional file extensions (comma-separated)

-

CODE_CUSTOM_IGNORE

Additional ignore patterns (comma-separated)

-

CODE_DEFAULT_LIMIT

Default search result limit

5

Provider Comparison

Provider

Models

Dimensions

Rate Limit

Notes

Ollama

nomic-embed-text

(default),

mxbai-embed-large

,

all-minilm

768, 1024, 384

None

Local, no API key

OpenAI

text-embedding-3-small

(default),

text-embedding-3-large

1536, 3072

3500/min

Cloud API

Cohere

embed-english-v3.0

(default),

embed-multilingual-v3.0

1024

100/min

Multilingual support

Voyage

voyage-2

(default),

voyage-large-2

,

voyage-code-2

1024, 1536

300/min

Code-specialized

Note: Ollama models require docker exec ollama ollama pull <model-name> before use.

Troubleshooting

Issue

Solution

Qdrant not running

docker compose up -d

Collection missing

Create collection first before adding documents

Ollama not running

Verify with

curl http://localhost:11434

, start with

docker compose up -d

Model missing

docker exec ollama ollama pull nomic-embed-text

Rate limit errors

Adjust

EMBEDDING_MAX_REQUESTS_PER_MINUTE

to match your provider tier

API key errors

Verify correct API key in environment configuration

Filter errors

Ensure Qdrant filter format, check field names match metadata

Codebase not indexed

Run

index_codebase

before

search_code

Slow indexing

Use Ollama (local) for faster indexing, or increase

CODE_BATCH_SIZE

Files not found

Check

.gitignore

and

.contextignore

patterns

Search returns no results

Try broader queries, check if codebase is indexed with

get_index_status

Out of memory during index

Reduce

CODE_CHUNK_SIZE

or

CODE_BATCH_SIZE

Development

npm run dev # Development with auto-reload npm run build # Production build npm run type-check # TypeScript validation npm test # Run test suite npm run test:coverage # Coverage report

Testing

422 tests (376 unit + 46 functional) with 98%+ coverage:

  • Unit Tests: QdrantManager (21), Ollama (31), OpenAI (25), Cohere (29), Voyage (31), Factory (32), MCP Server (19)

  • Functional Tests: Live API integration, end-to-end workflows (46)

CI/CD: GitHub Actions runs build, type-check, and tests on Node.js 20 & 22 for every push/PR.

Contributing

Contributions welcome! See CONTRIBUTING.md for:

  • Development workflow

  • Conventional commit format (feat:, fix:, BREAKING CHANGE:)

  • Testing requirements (run npm test, npm run type-check, npm run build)

Automated releases: Semantic versioning via conventional commits - feat: → minor, fix: → patch, BREAKING CHANGE: → major.

Acknowledgments

The code vectorization feature is inspired by and builds upon concepts from the excellent claude-context project (MIT License, Copyright 2025 Zilliz).

License

MIT - see LICENSE file.

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mhalder/qdrant-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server