Skip to main content
Glama
marckwei

MCP Yahoo Finance

by marckwei

get_recommendations

Retrieve analyst recommendations for stocks to inform investment decisions using Yahoo Finance data.

Instructions

Get analyst recommendations for a given symbol.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
symbolYesStock symbol in Yahoo Finance format.

Implementation Reference

  • The primary handler function implementing the tool logic: fetches analyst recommendations using yfinance's Ticker.get_recommendations(), formats as JSON if DataFrame.
    def get_recommendations(self, symbol: str) -> str: """Get analyst recommendations for a given symbol. Args: symbol (str): Stock symbol in Yahoo Finance format. """ stock = Ticker(ticker=symbol, session=self.session) recommendations = stock.get_recommendations() print(recommendations) if isinstance(recommendations, pd.DataFrame): return f"{recommendations.to_json(orient='records', indent=2)}" return f"{recommendations}"
  • Tool registration in the MCP server's list_tools() method, where generate_tool(yf.get_recommendations) creates and returns the Tool instance with schema.
    @server.list_tools() async def list_tools() -> list[Tool]: return [ generate_tool(yf.cmd_run), generate_tool(yf.get_recommendations), generate_tool(yf.get_news), generate_tool(yf.get_current_stock_price), generate_tool(yf.get_stock_price_by_date), generate_tool(yf.get_stock_price_date_range), generate_tool(yf.get_historical_stock_prices), generate_tool(yf.get_dividends), generate_tool(yf.get_income_statement), generate_tool(yf.get_cashflow), generate_tool(yf.get_earning_dates), ]
  • MCP server call_tool dispatcher case that invokes the get_recommendations handler and returns the result as TextContent.
    case "get_recommendations": recommendations = yf.get_recommendations(**args) return [TextContent(type="text", text=recommendations)]
  • Dynamic schema generation for all tools, including get_recommendations, based on function signature, type annotations, and Google-style docstring.
    def generate_tool(func: Any) -> Tool: """Generates a tool schema from a Python function.""" signature = inspect.signature(func) docstring = inspect.getdoc(func) or "" param_descriptions = parse_docstring(docstring) schema = { "name": func.__name__, "description": docstring.split("Args:")[0].strip(), "inputSchema": { "type": "object", "properties": {}, }, } for param_name, param in signature.parameters.items(): param_type = ( "number" if param.annotation is float else "string" if param.annotation is str else "string" ) schema["inputSchema"]["properties"][param_name] = { "type": param_type, "description": param_descriptions.get(param_name, ""), } if "required" not in schema["inputSchema"]: schema["inputSchema"]["required"] = [param_name] else: if "=" not in str(param): schema["inputSchema"]["required"].append(param_name) return Tool(**schema)
  • Helper function used by generate_tool to parse docstrings for parameter descriptions in the tool schema.
    def parse_docstring(docstring: str) -> dict[str, str]: """Parses a Google-style docstring to extract parameter descriptions.""" descriptions = {} if not docstring: return descriptions lines = docstring.split("\n") current_param = None for line in lines: line = line.strip() if line.startswith("Args:"): continue elif line and "(" in line and ")" in line and ":" in line: param = line.split("(")[0].strip() desc = line.split("):")[1].strip() descriptions[param] = desc current_param = param elif current_param and line: descriptions[current_param] += " " + line.strip() return descriptions

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/marckwei/no-use-tools'

If you have feedback or need assistance with the MCP directory API, please join our Discord server