get_recommendations
Retrieve analyst recommendations for stocks to inform investment decisions using Yahoo Finance data.
Instructions
Get analyst recommendations for a given symbol.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| symbol | Yes | Stock symbol in Yahoo Finance format. |
Implementation Reference
- src/mcp_yahoo_finance/server.py:20-31 (handler)The primary handler function implementing the tool logic: fetches analyst recommendations using yfinance's Ticker.get_recommendations(), formats as JSON if DataFrame.def get_recommendations(self, symbol: str) -> str: """Get analyst recommendations for a given symbol. Args: symbol (str): Stock symbol in Yahoo Finance format. """ stock = Ticker(ticker=symbol, session=self.session) recommendations = stock.get_recommendations() print(recommendations) if isinstance(recommendations, pd.DataFrame): return f"{recommendations.to_json(orient='records', indent=2)}" return f"{recommendations}"
- src/mcp_yahoo_finance/server.py:204-218 (registration)Tool registration in the MCP server's list_tools() method, where generate_tool(yf.get_recommendations) creates and returns the Tool instance with schema.@server.list_tools() async def list_tools() -> list[Tool]: return [ generate_tool(yf.cmd_run), generate_tool(yf.get_recommendations), generate_tool(yf.get_news), generate_tool(yf.get_current_stock_price), generate_tool(yf.get_stock_price_by_date), generate_tool(yf.get_stock_price_date_range), generate_tool(yf.get_historical_stock_prices), generate_tool(yf.get_dividends), generate_tool(yf.get_income_statement), generate_tool(yf.get_cashflow), generate_tool(yf.get_earning_dates), ]
- src/mcp_yahoo_finance/server.py:250-252 (handler)MCP server call_tool dispatcher case that invokes the get_recommendations handler and returns the result as TextContent.case "get_recommendations": recommendations = yf.get_recommendations(**args) return [TextContent(type="text", text=recommendations)]
- src/mcp_yahoo_finance/utils.py:31-65 (schema)Dynamic schema generation for all tools, including get_recommendations, based on function signature, type annotations, and Google-style docstring.def generate_tool(func: Any) -> Tool: """Generates a tool schema from a Python function.""" signature = inspect.signature(func) docstring = inspect.getdoc(func) or "" param_descriptions = parse_docstring(docstring) schema = { "name": func.__name__, "description": docstring.split("Args:")[0].strip(), "inputSchema": { "type": "object", "properties": {}, }, } for param_name, param in signature.parameters.items(): param_type = ( "number" if param.annotation is float else "string" if param.annotation is str else "string" ) schema["inputSchema"]["properties"][param_name] = { "type": param_type, "description": param_descriptions.get(param_name, ""), } if "required" not in schema["inputSchema"]: schema["inputSchema"]["required"] = [param_name] else: if "=" not in str(param): schema["inputSchema"]["required"].append(param_name) return Tool(**schema)
- src/mcp_yahoo_finance/utils.py:7-28 (helper)Helper function used by generate_tool to parse docstrings for parameter descriptions in the tool schema.def parse_docstring(docstring: str) -> dict[str, str]: """Parses a Google-style docstring to extract parameter descriptions.""" descriptions = {} if not docstring: return descriptions lines = docstring.split("\n") current_param = None for line in lines: line = line.strip() if line.startswith("Args:"): continue elif line and "(" in line and ")" in line and ":" in line: param = line.split("(")[0].strip() desc = line.split("):")[1].strip() descriptions[param] = desc current_param = param elif current_param and line: descriptions[current_param] += " " + line.strip() return descriptions