Skip to main content
Glama

MCP Yahoo Finance

by marckwei

get_income_statement

Retrieve income statements for a specific stock symbol, with options for yearly, quarterly, or trailing frequency, to analyze company financial performance via Yahoo Finance data.

Instructions

Get income statement for a given stock symbol.

Input Schema

NameRequiredDescriptionDefault
freqNoAt what frequency to get cashflow statements. Defaults to "yearly". Valid freqencies: "yearly", "quarterly", "trainling"
symbolYesStock symbol in Yahoo Finance format.

Input Schema (JSON Schema)

{ "properties": { "freq": { "description": "At what frequency to get cashflow statements. Defaults to \"yearly\". Valid freqencies: \"yearly\", \"quarterly\", \"trainling\"", "type": "string" }, "symbol": { "description": "Stock symbol in Yahoo Finance format.", "type": "string" } }, "required": [ "symbol" ], "type": "object" }

Implementation Reference

  • The core handler function that executes the tool logic: fetches income statement data using yfinance Ticker.get_income_stmt(), formats columns as dates, and returns JSON string.
    def get_income_statement( self, symbol: str, freq: Literal["yearly", "quarterly", "trainling"] = "yearly" ) -> str: """Get income statement for a given stock symbol. Args: symbol (str): Stock symbol in Yahoo Finance format. freq (str): At what frequency to get cashflow statements. Defaults to "yearly". Valid freqencies: "yearly", "quarterly", "trainling" """ stock = Ticker(ticker=symbol, session=self.session) income_statement = stock.get_income_stmt(freq=freq, pretty=True) if isinstance(income_statement, pd.DataFrame): income_statement.columns = [ str(col.date()) for col in income_statement.columns ] return f"{income_statement.to_json()}" return f"{income_statement}"
  • Registration of the tool in the list_tools() handler using generate_tool to create the Tool object with inferred schema.
    generate_tool(yf.get_income_statement),
  • Dispatch handler in call_tool() that invokes the specific tool handler with arguments and formats response as TextContent.
    case "get_income_statement": price = yf.get_income_statement(**args) return [TextContent(type="text", text=price)]
  • Helper utility that generates the tool schema (inputSchema) by inspecting function signature, type annotations, and parsing docstring for descriptions.
    def generate_tool(func: Any) -> Tool: """Generates a tool schema from a Python function.""" signature = inspect.signature(func) docstring = inspect.getdoc(func) or "" param_descriptions = parse_docstring(docstring) schema = { "name": func.__name__, "description": docstring.split("Args:")[0].strip(), "inputSchema": { "type": "object", "properties": {}, }, } for param_name, param in signature.parameters.items(): param_type = ( "number" if param.annotation is float else "string" if param.annotation is str else "string" ) schema["inputSchema"]["properties"][param_name] = { "type": param_type, "description": param_descriptions.get(param_name, ""), } if "required" not in schema["inputSchema"]: schema["inputSchema"]["required"] = [param_name] else: if "=" not in str(param): schema["inputSchema"]["required"].append(param_name) return Tool(**schema)
  • Function signature and type annotations that define the input schema, along with docstring used for parameter descriptions.
    def get_income_statement( self, symbol: str, freq: Literal["yearly", "quarterly", "trainling"] = "yearly" ) -> str: """Get income statement for a given stock symbol. Args: symbol (str): Stock symbol in Yahoo Finance format. freq (str): At what frequency to get cashflow statements. Defaults to "yearly". Valid freqencies: "yearly", "quarterly", "trainling" """ stock = Ticker(ticker=symbol, session=self.session) income_statement = stock.get_income_stmt(freq=freq, pretty=True) if isinstance(income_statement, pd.DataFrame): income_statement.columns = [ str(col.date()) for col in income_statement.columns ] return f"{income_statement.to_json()}" return f"{income_statement}"

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/marckwei/no-use-tools'

If you have feedback or need assistance with the MCP directory API, please join our Discord server