Skip to main content
Glama
manish6007

Combined MCP Server

by manish6007

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
REDSHIFT_CLUSTER_IDYesRedshift cluster identifier
POSTGRES_SECRET_NAMEYesSecrets Manager secret for pgvector DB
BEDROCK_EMBEDDING_MODELYesTitan embedding model ID
KNOWLEDGEBASE_S3_BUCKETYesS3 bucket with markdown files

Capabilities

Features and capabilities supported by this server

CapabilityDetails
tools
{
  "listChanged": false
}
prompts
{
  "listChanged": false
}
resources
{
  "subscribe": false,
  "listChanged": false
}
experimental
{}

Tools

Functions exposed to the LLM to take actions

NameDescription
run_query
Execute a SQL query on Redshift. For queries returning more than 100 rows, the full result set is stored in S3 and only 20 sample rows are returned. Args: sql: The SQL query to execute db_user: Database user for authentication via get_cluster_credentials db_group: Optional database group for permissions
list_schemas
List all schemas in the Redshift database. Args: db_user: Database user for authentication db_group: Optional database group for permissions
list_tables
List all tables in a Redshift schema. Args: schema: Schema name to list tables from db_user: Database user for authentication db_group: Optional database group for permissions
describe_table
Get detailed information about a Redshift table including columns and data types. Args: schema: Schema name table: Table name db_user: Database user for authentication db_group: Optional database group for permissions
build_vectorstore
Build or rebuild the knowledge base vector store from S3 markdown files. Downloads all markdown files from the configured S3 location, processes them into chunks, generates embeddings using AWS Bedrock Titan, and stores in PostgreSQL.
query_vectorstore
Search the knowledge base vector store. Supports semantic search (vector similarity), keyword search (full-text), or hybrid search combining both with RRF reranking. Results are cached for performance. Args: query: The search query text top_k: Maximum number of results to return (default: 10) search_type: Type of search - semantic, keyword, or hybrid (default)
get_vectorstore_status
Get the current status of the knowledge base vector store. Returns build status, document count, and cache statistics.

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/manish6007/mcp_servers'

If you have feedback or need assistance with the MCP directory API, please join our Discord server