Skip to main content
Glama

Combined MCP Server

A production-grade MCP (Model Context Protocol) server combining Redshift query capabilities and Knowledgebase vector store features.

Features

Redshift Tools

  • run_query - Execute SQL with IAM authentication via get_cluster_credentials

  • list_schemas - List database schemas

  • list_tables - List tables in a schema

  • describe_table - Get table structure

Large results (>100 rows) are automatically stored in S3 with 20 sample rows returned.

Knowledgebase Tools

  • build_vectorstore - Build vector store from S3 markdown files

  • query_vectorstore - Hybrid search (semantic + keyword) with RRF reranking

  • get_vectorstore_status - Check build status and cache stats

Quick Start

Local Development

  1. Install uv (if not already installed):

    curl -LsSf https://astral.sh/uv/install.sh | sh # Or on Windows: powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
  2. Start infrastructure:

    docker-compose up -d postgres localstack
  3. Install dependencies:

    uv pip install -e ".[dev]"
  4. Configure environment:

    cp .env.example .env.local # Edit .env.local with your settings
  5. Run the server:

    # With MCP Inspector mcp dev src/combined_mcp_server/main.py # Or directly python -m combined_mcp_server.main

ECS Deployment

# Build container docker build -t combined-mcp-server . # Run with health checks docker run -p 8080:8080 --env-file .env combined-mcp-server

Health endpoints:

  • GET /health - Liveness probe

  • GET /ready - Readiness probe

  • GET /status - Detailed status

Configuration

See .env.example for all configuration options. Key settings:

Variable

Description

REDSHIFT_CLUSTER_ID

Redshift cluster identifier

POSTGRES_SECRET_NAME

Secrets Manager secret for pgvector DB

KNOWLEDGEBASE_S3_BUCKET

S3 bucket with markdown files

BEDROCK_EMBEDDING_MODEL

Titan embedding model ID

Architecture

┌─────────────────────────────────────────────────────┐ │ Combined MCP Server │ ├─────────────────────┬───────────────────────────────┤ │ Redshift Tools │ Knowledgebase Tools │ │ ───────────────── │ ─────────────────────────── │ │ • run_query │ • build_vectorstore │ │ • list_schemas │ • query_vectorstore │ │ • list_tables │ • get_vectorstore_status │ │ • describe_table │ │ ├─────────────────────┴───────────────────────────────┤ │ Core Services │ │ AWS (Secrets Manager, S3, Bedrock, Redshift) │ │ PostgreSQL + pgvector │ └─────────────────────────────────────────────────────┘

Testing

# Unit tests pytest tests/ -v # With coverage pytest tests/ -v --cov=combined_mcp_server # Integration tests (requires Docker) docker-compose up -d pytest tests/ -v -m integration

License

MIT

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/manish6007/mcp_servers'

If you have feedback or need assistance with the MCP directory API, please join our Discord server