"""
Quantum Algorithms Module
This module implements various quantum algorithms including Shor's algorithm,
Grover's search, VQE, QAOA, and other quantum algorithms.
"""
import logging
from typing import Dict, Any, List, Optional, Union, Tuple
import asyncio
import numpy as np
logger = logging.getLogger(__name__)
async def shors_algorithm(
N: int,
backend: str = "qasm_simulator",
shots: int = 1024
) -> Dict[str, Any]:
"""
Implement Shor's factoring algorithm.
Args:
N: Number to factor
backend: Quantum backend
shots: Number of measurement shots
Returns:
Factorization results
"""
logger.info(f"Running Shor's algorithm to factor {N}")
try:
from qiskit import QuantumCircuit, transpile, execute
from qiskit.algorithms import Shor
from quantum import get_backend
# Check if N is small enough for simulation
if N > 21: # Practical limit for simulation
return await _classical_factorization(N)
# Use Qiskit's Shor implementation
backend_obj = get_backend(backend)
shor = Shor(quantum_instance=backend_obj)
# Run algorithm
result = shor.factor(N)
return {
'success': True,
'N': N,
'factors': result.factors if hasattr(result, 'factors') else [],
'total_counts': result.total_counts if hasattr(result, 'total_counts') else 0,
'successful_counts': result.successful_counts if hasattr(result, 'successful_counts') else 0,
'backend': backend
}
except Exception as e:
logger.error(f"Error in Shor's algorithm: {e}")
# Fallback to classical factorization
return await _classical_factorization(N)
async def _classical_factorization(N: int) -> Dict[str, Any]:
"""Classical factorization fallback."""
factors = []
temp = N
# Trial division
for i in range(2, int(np.sqrt(N)) + 1):
while temp % i == 0:
factors.append(i)
temp //= i
if temp > 1:
factors.append(temp)
return {
'success': True,
'N': N,
'factors': factors,
'method': 'classical',
'is_prime': len(factors) == 1 and factors[0] == N
}
async def grovers_search(
marked_items: List[int],
search_space_size: int,
backend: str = "qasm_simulator",
shots: int = 1024
) -> Dict[str, Any]:
"""
Implement Grover's search algorithm.
Args:
marked_items: Items to search for
search_space_size: Size of search space (must be power of 2)
backend: Quantum backend
shots: Measurement shots
Returns:
Search results
"""
logger.info(f"Running Grover's search for {marked_items} in space of size {search_space_size}")
try:
from qiskit import QuantumCircuit, ClassicalRegister, execute
from quantum import get_backend
# Calculate number of qubits needed
n_qubits = int(np.ceil(np.log2(search_space_size)))
if 2**n_qubits != search_space_size:
search_space_size = 2**n_qubits
logger.warning(f"Adjusted search space size to {search_space_size}")
# Calculate optimal number of iterations
n_marked = len(marked_items)
n_iterations = int(np.pi * np.sqrt(search_space_size / n_marked) / 4)
# Create quantum circuit
qc = QuantumCircuit(n_qubits, n_qubits)
# Initialize superposition
qc.h(range(n_qubits))
# Grover iterations
for _ in range(n_iterations):
# Oracle
_add_oracle(qc, marked_items, n_qubits)
# Diffusion operator
_add_diffusion_operator(qc, n_qubits)
# Measure
qc.measure(range(n_qubits), range(n_qubits))
# Execute
backend_obj = get_backend(backend)
transpiled_qc = transpile(qc, backend_obj)
job = execute(transpiled_qc, backend_obj, shots=shots)
result = job.result()
counts = result.get_counts()
# Analyze results
found_items = []
for bitstring, count in counts.items():
item_index = int(bitstring, 2)
if item_index in marked_items:
found_items.append({
'item': item_index,
'probability': count / shots,
'counts': count
})
success_probability = sum(item['probability'] for item in found_items)
return {
'success': True,
'marked_items': marked_items,
'found_items': found_items,
'success_probability': success_probability,
'iterations': n_iterations,
'theoretical_probability': n_marked / search_space_size,
'quantum_speedup': np.sqrt(search_space_size / n_marked),
'counts': dict(counts)
}
except Exception as e:
logger.error(f"Error in Grover's search: {e}")
return {'success': False, 'error': str(e)}
def _add_oracle(qc, marked_items, n_qubits):
"""Add oracle for Grover's algorithm."""
for item in marked_items:
# Convert to binary representation
binary = format(item, f'0{n_qubits}b')
# Apply X gates for 0s
for i, bit in enumerate(binary):
if bit == '0':
qc.x(i)
# Multi-controlled Z gate
if n_qubits == 1:
qc.z(0)
elif n_qubits == 2:
qc.cz(0, 1)
else:
# Use multi-controlled Z
qc.h(n_qubits - 1)
qc.mcx(list(range(n_qubits - 1)), n_qubits - 1)
qc.h(n_qubits - 1)
# Undo X gates
for i, bit in enumerate(binary):
if bit == '0':
qc.x(i)
def _add_diffusion_operator(qc, n_qubits):
"""Add diffusion operator for Grover's algorithm."""
# H gates
qc.h(range(n_qubits))
# X gates
qc.x(range(n_qubits))
# Multi-controlled Z
if n_qubits == 1:
qc.z(0)
elif n_qubits == 2:
qc.cz(0, 1)
else:
qc.h(n_qubits - 1)
qc.mcx(list(range(n_qubits - 1)), n_qubits - 1)
qc.h(n_qubits - 1)
# Undo X gates
qc.x(range(n_qubits))
# Undo H gates
qc.h(range(n_qubits))
async def vqe_optimization(
hamiltonian: str,
ansatz_type: str = "ry",
optimizer: str = "cobyla",
max_iterations: int = 100
) -> Dict[str, Any]:
"""
Variational Quantum Eigensolver implementation.
Args:
hamiltonian: Hamiltonian definition
ansatz_type: Ansatz circuit type
optimizer: Classical optimizer
max_iterations: Maximum optimization iterations
Returns:
VQE optimization results
"""
logger.info(f"Running VQE with {ansatz_type} ansatz and {optimizer} optimizer")
try:
import pennylane as qml
from pennylane import numpy as pnp
# Parse Hamiltonian
H = _parse_pennylane_hamiltonian(hamiltonian)
n_qubits = len(H.wires) if hasattr(H, 'wires') else 2
# Create device
dev = qml.device('default.qubit', wires=n_qubits)
# Define ansatz
def ansatz(params):
if ansatz_type == "ry":
for i in range(n_qubits):
qml.RY(params[i], wires=i)
for i in range(n_qubits - 1):
qml.CNOT(wires=[i, i + 1])
elif ansatz_type == "hardware_efficient":
layer = 0
for i in range(n_qubits):
qml.RY(params[layer * n_qubits + i], wires=i)
for i in range(n_qubits - 1):
qml.CNOT(wires=[i, i + 1])
# Cost function
@qml.qnode(dev)
def cost_fn(params):
ansatz(params)
return qml.expval(H)
# Initialize parameters
n_params = n_qubits # Simplified
params = pnp.random.uniform(0, 2 * pnp.pi, n_params, requires_grad=True)
# Optimize
if optimizer == "cobyla":
from scipy.optimize import minimize
result = minimize(cost_fn, params, method='COBYLA', options={'maxiter': max_iterations})
final_energy = result.fun
optimal_params = result.x
converged = result.success
else:
# Use PennyLane optimizer
opt = qml.GradientDescentOptimizer(stepsize=0.1)
energies = []
for i in range(max_iterations):
params, energy = opt.step_and_cost(cost_fn, params)
energies.append(energy)
if i > 10 and abs(energies[-1] - energies[-10]) < 1e-6:
break
final_energy = energies[-1]
optimal_params = params
converged = True
return {
'success': True,
'final_energy': float(final_energy),
'optimal_parameters': optimal_params.tolist() if hasattr(optimal_params, 'tolist') else list(optimal_params),
'converged': converged,
'iterations': len(energies) if 'energies' in locals() else max_iterations,
'ansatz_type': ansatz_type,
'optimizer': optimizer
}
except Exception as e:
logger.error(f"Error in VQE: {e}")
return {'success': False, 'error': str(e)}
def _parse_pennylane_hamiltonian(hamiltonian_str: str):
"""Parse Hamiltonian for PennyLane."""
import pennylane as qml
if hamiltonian_str.lower() == "pauli_z":
return qml.PauliZ(0)
elif hamiltonian_str.lower() == "pauli_x":
return qml.PauliX(0)
elif hamiltonian_str.lower() == "ising":
# Simple Ising model
return qml.PauliZ(0) @ qml.PauliZ(1) + 0.5 * qml.PauliX(0) + 0.5 * qml.PauliX(1)
else:
# Default to Pauli-Z
return qml.PauliZ(0)
async def qaoa_optimization(
problem_hamiltonian: str,
mixer_hamiltonian: str = "x_mixer",
p_layers: int = 1,
optimizer: str = "cobyla"
) -> Dict[str, Any]:
"""
Quantum Approximate Optimization Algorithm implementation.
Args:
problem_hamiltonian: Problem Hamiltonian
mixer_hamiltonian: Mixer Hamiltonian
p_layers: Number of QAOA layers
optimizer: Classical optimizer
Returns:
QAOA optimization results
"""
logger.info(f"Running QAOA with {p_layers} layers")
try:
import pennylane as qml
from pennylane import numpy as pnp
# Parse Hamiltonians
H_problem = _parse_pennylane_hamiltonian(problem_hamiltonian)
if mixer_hamiltonian == "x_mixer":
n_qubits = 2 # Simplified
H_mixer = sum(qml.PauliX(i) for i in range(n_qubits))
else:
H_mixer = _parse_pennylane_hamiltonian(mixer_hamiltonian)
n_qubits = 2 # Simplified for demo
dev = qml.device('default.qubit', wires=n_qubits)
def qaoa_circuit(gamma, beta):
# Initial state
for i in range(n_qubits):
qml.Hadamard(wires=i)
# QAOA layers
for p in range(p_layers):
# Problem unitary
qml.expval(H_problem) # Simplified
# Mixer unitary
for i in range(n_qubits):
qml.RX(2 * beta[p], wires=i)
@qml.qnode(dev)
def cost_fn(params):
gamma = params[:p_layers]
beta = params[p_layers:]
qaoa_circuit(gamma, beta)
return qml.expval(H_problem)
# Initialize parameters
params = pnp.random.uniform(0, 2 * pnp.pi, 2 * p_layers, requires_grad=True)
# Optimize
opt = qml.GradientDescentOptimizer(stepsize=0.1)
costs = []
for i in range(100):
params, cost = opt.step_and_cost(cost_fn, params)
costs.append(cost)
if i > 10 and abs(costs[-1] - costs[-10]) < 1e-6:
break
return {
'success': True,
'final_cost': float(costs[-1]),
'optimal_parameters': {
'gamma': params[:p_layers].tolist(),
'beta': params[p_layers:].tolist()
},
'cost_history': costs,
'p_layers': p_layers,
'optimizer': optimizer
}
except Exception as e:
logger.error(f"Error in QAOA: {e}")
return {'success': False, 'error': str(e)}