Skip to main content
Glama

Psi-MCP: Advanced Quantum Systems MCP Server

by manasp21

Psi-MCP: Advanced Quantum Systems MCP Server

Quantum Computing MCP Server Smithery Compatible Python

The most comprehensive quantum physics MCP server for complex open and closed quantum systems calculations

๐ŸŒŸ Overview

Psi-MCP is an advanced Model Context Protocol (MCP) server specifically designed for quantum systems analysis and simulation. It provides comprehensive tools for quantum computing, quantum chemistry, many-body physics, quantum machine learning, and quantum field theory calculations.

Key Features

  • ๐Ÿ”ฌ Quantum Circuit Operations: Create, simulate, optimize, and visualize quantum circuits

  • โš›๏ธ Open Quantum Systems: Solve master equations, analyze decoherence, compute steady states

  • ๐Ÿงช Quantum Chemistry: Molecular Hamiltonians, VQE, electronic structure calculations

  • ๐Ÿ”— Many-Body Physics: DMRG, tensor networks, phase transitions, correlation functions

  • ๐Ÿค– Quantum Machine Learning: QNNs, variational classifiers, quantum kernels

  • ๐ŸŒŠ Quantum Field Theory: Field quantization, path integrals, RG flow, anomalies

  • ๐Ÿ“Š Advanced Visualization: Bloch spheres, density matrices, Wigner functions

  • ๐Ÿš€ Smithery Compatible: Easy deployment and integration

๐Ÿ›  Installation

Prerequisites

  • Python 3.11 or higher

  • Docker (for containerized deployment)

  • Git

Core vs Optional Dependencies

Core Dependencies (always installed):

  • FastAPI, Uvicorn (MCP server framework)

  • Qiskit, Cirq, PennyLane (quantum computing)

  • QuTiP (open quantum systems)

  • OpenFermion (quantum chemistry)

  • NumPy, SciPy, Matplotlib (numerical computing)

Optional Dependencies (install separately if needed):

  • PySCF (advanced quantum chemistry)

  • TensorFlow Quantum (quantum ML)

  • NetKet (neural quantum states)

  • Additional quantum libraries

Quick Start with Smithery

# Install via Smithery CLI npx @smithery/cli install psi-mcp --client cursor # Or deploy via GitHub integration git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP # Push to your GitHub repository and connect to Smithery

Local Development

# Clone the repository git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP # Install dependencies pip install -r requirements.txt # Run the server python src/server.py

Docker Deployment

# Build the container docker build -t psi-mcp . # Run with configuration docker run -p 8000:8000 \ -e computing_backend=simulator \ -e max_qubits=20 \ -e precision=double \ psi-mcp

๐Ÿ”ง Configuration

Smithery Configuration

Configure via the Smithery dashboard or query parameters:

computing_backend: "simulator" # qasm_simulator, statevector_simulator max_qubits: 20 # Maximum qubits (1-30) precision: "double" # single, double, extended enable_gpu: false # GPU acceleration timeout_seconds: 300 # Calculation timeout memory_limit_gb: 4 # Memory limit

Environment Variables

PORT=8000 # Server port HOST=0.0.0.0 # Server host COMPUTING_BACKEND=simulator # Default backend MAX_QUBITS=20 # Default max qubits

๐Ÿš€ Usage

Quantum Circuit Operations

Create Quantum Circuits

# Create a Bell state circuit create_quantum_circuit( num_qubits=2, circuit_type="bell", backend="qasm_simulator" ) # Create a GHZ state create_quantum_circuit( num_qubits=4, circuit_type="ghz", backend="statevector_simulator" ) # Create quantum Fourier transform create_quantum_circuit( num_qubits=3, circuit_type="qft", backend="simulator" )

Simulate Circuits

# Simulate with measurements simulate_quantum_circuit( circuit_definition="circuit_1", shots=1024, backend="qasm_simulator" ) # Get statevector simulate_quantum_circuit( circuit_definition="circuit_2", shots=1, backend="statevector_simulator" )

Optimize Circuits

# Optimize for specific backend optimize_quantum_circuit( circuit_definition="circuit_1", optimization_level=2, target_backend="qasm_simulator" )

Open Quantum Systems

Master Equation Solving

# Solve Lindblad master equation solve_master_equation( hamiltonian="pauli_z", collapse_operators="spontaneous_emission", initial_state="excited", time_span="0,10,100", solver_method="mesolve" ) # Analyze decoherence analyze_decoherence( system_hamiltonian="pauli_x", environment_coupling="dephasing", temperature=0.1, analysis_type="dephasing" )

Quantum Chemistry

Molecular Calculations

# Generate molecular Hamiltonian generate_molecular_hamiltonian( molecule="H2", basis="sto-3g", charge=0, multiplicity=1 ) # Run VQE for electronic structure vqe_chemistry( molecule="H2O", basis="6-31g", ansatz="uccsd", optimizer="cobyla" ) # Simulate chemical reactions simulate_chemical_reaction( reactants=["H2", "O2"], products=["H2O"], method="vqe" )

Quantum Algorithms

Shor's Algorithm

# Factor integers shors_algorithm( N=15, backend="qasm_simulator", shots=1024 )

Grover's Search

# Search marked items grovers_search( marked_items=[3, 7], search_space_size=16, backend="simulator" )

VQE Optimization

# Variational quantum eigensolver vqe_optimization( hamiltonian="ising", ansatz_type="ry", optimizer="cobyla", max_iterations=100 )

Many-Body Physics

DMRG Simulations

# Run DMRG for spin chains dmrg_simulation( hamiltonian_type="heisenberg", system_size=20, bond_dimension=100, max_sweeps=10 ) # Phase transition analysis phase_transition_analysis( model_type="ising", parameter_range=[0.0, 2.0], n_points=20, system_size=16 )

Quantum Machine Learning

Neural Networks

# Train quantum neural network quantum_neural_network( input_data=[[0.1, 0.2], [0.3, 0.4]], labels=[0, 1], n_qubits=4, n_layers=2, epochs=50 ) # Variational classifier variational_classifier( training_data=train_X, training_labels=train_y, test_data=test_X, ansatz_type="hardware_efficient" )

Visualization

Quantum States

# Bloch sphere visualization visualize_quantum_state( state_definition="superposition", visualization_type="bloch_sphere" ) # Density matrix plot visualize_quantum_state( state_definition="bell", visualization_type="density_matrix" ) # Wigner function visualize_quantum_state( state_definition="coherent", visualization_type="wigner_function" )

๐Ÿ“š API Reference

Core Tools

Tool Name

Description

Parameters

create_quantum_circuit

Create quantum circuits

num_qubits

,

circuit_type

,

backend

simulate_quantum_circuit

Simulate circuits

circuit_definition

,

shots

,

backend

solve_master_equation

Solve open system dynamics

hamiltonian

,

collapse_operators

,

initial_state

vqe_optimization

Variational quantum eigensolver

hamiltonian

,

ansatz_type

,

optimizer

dmrg_simulation

Many-body simulations

hamiltonian_type

,

system_size

,

bond_dimension

quantum_neural_network

Train QNNs

input_data

,

labels

,

n_qubits

,

n_layers

Supported Backends

  • Qiskit: qasm_simulator, statevector_simulator, unitary_simulator

  • Cirq: cirq_simulator

  • PennyLane: default.qubit, default.qubit.torch

Circuit Types

  • empty: Empty circuit

  • bell: Bell state preparation

  • ghz: GHZ state preparation

  • qft: Quantum Fourier transform

  • random: Random circuit

๐Ÿ— Architecture

Psi-MCP/ โ”œโ”€โ”€ src/ โ”‚ โ”œโ”€โ”€ server.py # Main MCP server โ”‚ โ””โ”€โ”€ quantum/ # Quantum modules โ”‚ โ”œโ”€โ”€ __init__.py # Backend initialization โ”‚ โ”œโ”€โ”€ circuits.py # Circuit operations โ”‚ โ”œโ”€โ”€ systems.py # Open quantum systems โ”‚ โ”œโ”€โ”€ algorithms.py # Quantum algorithms โ”‚ โ”œโ”€โ”€ chemistry.py # Quantum chemistry โ”‚ โ”œโ”€โ”€ many_body.py # Many-body physics โ”‚ โ”œโ”€โ”€ field_theory.py # Quantum field theory โ”‚ โ”œโ”€โ”€ ml.py # Quantum ML โ”‚ โ”œโ”€โ”€ visualization.py # Visualization tools โ”‚ โ””โ”€โ”€ utils.py # Utility functions โ”œโ”€โ”€ tests/ # Test suite โ”œโ”€โ”€ docs/ # Documentation โ”œโ”€โ”€ smithery.yaml # Smithery configuration โ”œโ”€โ”€ Dockerfile # Container configuration โ”œโ”€โ”€ requirements.txt # Python dependencies โ””โ”€โ”€ README.md # This file

๐Ÿงช Examples

Complete Workflow Example

# 1. Create and simulate a quantum circuit circuit_result = create_quantum_circuit( num_qubits=3, circuit_type="ghz", backend="qasm_simulator" ) # 2. Simulate the circuit simulation_result = simulate_quantum_circuit( circuit_definition=circuit_result['id'], shots=1000, backend="qasm_simulator" ) # 3. Visualize the results plot_result = plot_measurement_results( counts=simulation_result['counts'], title="GHZ State Measurement" ) # 4. Analyze entanglement entropy = calculate_entanglement_entropy( circuit_definition=circuit_result['id'], subsystem_size=1 )

Quantum Chemistry Workflow

# 1. Generate molecular Hamiltonian hamiltonian = generate_molecular_hamiltonian( molecule="H2", basis="sto-3g" ) # 2. Run VQE calculation vqe_result = vqe_chemistry( molecule="H2", basis="sto-3g", ansatz="uccsd" ) # 3. Compute molecular properties properties = compute_molecular_properties( molecule="H2", method="hf", basis="sto-3g" )

๐Ÿ”ฌ Advanced Features

Custom Hamiltonians

# Define custom spin chain solve_master_equation( hamiltonian=json.dumps([[1, 0], [0, -1]]), collapse_operators="custom_operators", initial_state="custom_state" )

GPU Acceleration

# Enable GPU support configure_server( enable_gpu=True, computing_backend="gpu_simulator" )

Parallel Processing

# Parallel circuit simulation simulate_circuits_parallel( circuit_definitions=["circuit_1", "circuit_2", "circuit_3"], shots=1000 )

๐Ÿ“Š Performance

Benchmarks

Operation

System Size

Execution Time

Memory Usage

Circuit Simulation

20 qubits

~2s

~100MB

VQE Optimization

H2O molecule

~30s

~200MB

DMRG Calculation

50 sites

~60s

~500MB

QNN Training

100 samples

~45s

~150MB

Scaling

  • Quantum Circuits: Up to 30 qubits (simulator dependent)

  • Many-Body Systems: Up to 100 sites with DMRG

  • Molecular Systems: Up to 20 orbitals with VQE

  • ML Training: Up to 1000 samples efficiently

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Clone and install development dependencies git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP pip install -r requirements.txt pip install -e .[dev] # Run tests pytest tests/ # Format code black src/ tests/ isort src/ tests/ # Type checking mypy src/

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • Qiskit Team for quantum computing framework

  • QuTiP Developers for open quantum systems tools

  • PennyLane Team for quantum machine learning

  • OpenFermion Contributors for quantum chemistry tools

  • Smithery Platform for MCP server hosting

๐Ÿ“ž Support

๐Ÿ—บ Roadmap

v1.1.0 (Next Release)

  • ITensor integration for tensor networks

  • NetKet support for neural quantum states

  • Advanced error mitigation tools

  • Quantum error correction codes

v1.2.0 (Future)

  • Hardware backend support (IBM, Google, IonQ)

  • Advanced visualization dashboard

  • Quantum advantage benchmarks

  • Multi-user collaboration features


Built with โค๏ธ for the quantum computing community

๐ŸŒŸ Star us on GitHub | ๐Ÿ“– Read the Docs | ๐Ÿš€ Deploy on Smithery

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/manasp21/Psi-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server