Skip to main content
Glama

Psi-MCP: Advanced Quantum Systems MCP Server

by manasp21
README.mdโ€ข13.3 kB
# Psi-MCP: Advanced Quantum Systems MCP Server <div align="center"> ![Quantum Computing](https://img.shields.io/badge/Quantum-Computing-blue?style=for-the-badge) ![MCP Server](https://img.shields.io/badge/MCP-Server-green?style=for-the-badge) ![Smithery Compatible](https://img.shields.io/badge/Smithery-Compatible-purple?style=for-the-badge) ![Python](https://img.shields.io/badge/Python-3.11+-red?style=for-the-badge) *The most comprehensive quantum physics MCP server for complex open and closed quantum systems calculations* </div> ## ๐ŸŒŸ Overview Psi-MCP is an advanced Model Context Protocol (MCP) server specifically designed for quantum systems analysis and simulation. It provides comprehensive tools for quantum computing, quantum chemistry, many-body physics, quantum machine learning, and quantum field theory calculations. ### Key Features - ๐Ÿ”ฌ **Quantum Circuit Operations**: Create, simulate, optimize, and visualize quantum circuits - โš›๏ธ **Open Quantum Systems**: Solve master equations, analyze decoherence, compute steady states - ๐Ÿงช **Quantum Chemistry**: Molecular Hamiltonians, VQE, electronic structure calculations - ๐Ÿ”— **Many-Body Physics**: DMRG, tensor networks, phase transitions, correlation functions - ๐Ÿค– **Quantum Machine Learning**: QNNs, variational classifiers, quantum kernels - ๐ŸŒŠ **Quantum Field Theory**: Field quantization, path integrals, RG flow, anomalies - ๐Ÿ“Š **Advanced Visualization**: Bloch spheres, density matrices, Wigner functions - ๐Ÿš€ **Smithery Compatible**: Easy deployment and integration ## ๐Ÿ›  Installation ### Prerequisites - Python 3.11 or higher - Docker (for containerized deployment) - Git ### Core vs Optional Dependencies **Core Dependencies (always installed):** - FastAPI, Uvicorn (MCP server framework) - Qiskit, Cirq, PennyLane (quantum computing) - QuTiP (open quantum systems) - OpenFermion (quantum chemistry) - NumPy, SciPy, Matplotlib (numerical computing) **Optional Dependencies (install separately if needed):** - PySCF (advanced quantum chemistry) - TensorFlow Quantum (quantum ML) - NetKet (neural quantum states) - Additional quantum libraries ### Quick Start with Smithery ```bash # Install via Smithery CLI npx @smithery/cli install psi-mcp --client cursor # Or deploy via GitHub integration git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP # Push to your GitHub repository and connect to Smithery ``` ### Local Development ```bash # Clone the repository git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP # Install dependencies pip install -r requirements.txt # Run the server python src/server.py ``` ### Docker Deployment ```bash # Build the container docker build -t psi-mcp . # Run with configuration docker run -p 8000:8000 \ -e computing_backend=simulator \ -e max_qubits=20 \ -e precision=double \ psi-mcp ``` ## ๐Ÿ”ง Configuration ### Smithery Configuration Configure via the Smithery dashboard or query parameters: ```yaml computing_backend: "simulator" # qasm_simulator, statevector_simulator max_qubits: 20 # Maximum qubits (1-30) precision: "double" # single, double, extended enable_gpu: false # GPU acceleration timeout_seconds: 300 # Calculation timeout memory_limit_gb: 4 # Memory limit ``` ### Environment Variables ```bash PORT=8000 # Server port HOST=0.0.0.0 # Server host COMPUTING_BACKEND=simulator # Default backend MAX_QUBITS=20 # Default max qubits ``` ## ๐Ÿš€ Usage ### Quantum Circuit Operations #### Create Quantum Circuits ```python # Create a Bell state circuit create_quantum_circuit( num_qubits=2, circuit_type="bell", backend="qasm_simulator" ) # Create a GHZ state create_quantum_circuit( num_qubits=4, circuit_type="ghz", backend="statevector_simulator" ) # Create quantum Fourier transform create_quantum_circuit( num_qubits=3, circuit_type="qft", backend="simulator" ) ``` #### Simulate Circuits ```python # Simulate with measurements simulate_quantum_circuit( circuit_definition="circuit_1", shots=1024, backend="qasm_simulator" ) # Get statevector simulate_quantum_circuit( circuit_definition="circuit_2", shots=1, backend="statevector_simulator" ) ``` #### Optimize Circuits ```python # Optimize for specific backend optimize_quantum_circuit( circuit_definition="circuit_1", optimization_level=2, target_backend="qasm_simulator" ) ``` ### Open Quantum Systems #### Master Equation Solving ```python # Solve Lindblad master equation solve_master_equation( hamiltonian="pauli_z", collapse_operators="spontaneous_emission", initial_state="excited", time_span="0,10,100", solver_method="mesolve" ) # Analyze decoherence analyze_decoherence( system_hamiltonian="pauli_x", environment_coupling="dephasing", temperature=0.1, analysis_type="dephasing" ) ``` ### Quantum Chemistry #### Molecular Calculations ```python # Generate molecular Hamiltonian generate_molecular_hamiltonian( molecule="H2", basis="sto-3g", charge=0, multiplicity=1 ) # Run VQE for electronic structure vqe_chemistry( molecule="H2O", basis="6-31g", ansatz="uccsd", optimizer="cobyla" ) # Simulate chemical reactions simulate_chemical_reaction( reactants=["H2", "O2"], products=["H2O"], method="vqe" ) ``` ### Quantum Algorithms #### Shor's Algorithm ```python # Factor integers shors_algorithm( N=15, backend="qasm_simulator", shots=1024 ) ``` #### Grover's Search ```python # Search marked items grovers_search( marked_items=[3, 7], search_space_size=16, backend="simulator" ) ``` #### VQE Optimization ```python # Variational quantum eigensolver vqe_optimization( hamiltonian="ising", ansatz_type="ry", optimizer="cobyla", max_iterations=100 ) ``` ### Many-Body Physics #### DMRG Simulations ```python # Run DMRG for spin chains dmrg_simulation( hamiltonian_type="heisenberg", system_size=20, bond_dimension=100, max_sweeps=10 ) # Phase transition analysis phase_transition_analysis( model_type="ising", parameter_range=[0.0, 2.0], n_points=20, system_size=16 ) ``` ### Quantum Machine Learning #### Neural Networks ```python # Train quantum neural network quantum_neural_network( input_data=[[0.1, 0.2], [0.3, 0.4]], labels=[0, 1], n_qubits=4, n_layers=2, epochs=50 ) # Variational classifier variational_classifier( training_data=train_X, training_labels=train_y, test_data=test_X, ansatz_type="hardware_efficient" ) ``` ### Visualization #### Quantum States ```python # Bloch sphere visualization visualize_quantum_state( state_definition="superposition", visualization_type="bloch_sphere" ) # Density matrix plot visualize_quantum_state( state_definition="bell", visualization_type="density_matrix" ) # Wigner function visualize_quantum_state( state_definition="coherent", visualization_type="wigner_function" ) ``` ## ๐Ÿ“š API Reference ### Core Tools | Tool Name | Description | Parameters | |-----------|-------------|------------| | `create_quantum_circuit` | Create quantum circuits | `num_qubits`, `circuit_type`, `backend` | | `simulate_quantum_circuit` | Simulate circuits | `circuit_definition`, `shots`, `backend` | | `solve_master_equation` | Solve open system dynamics | `hamiltonian`, `collapse_operators`, `initial_state` | | `vqe_optimization` | Variational quantum eigensolver | `hamiltonian`, `ansatz_type`, `optimizer` | | `dmrg_simulation` | Many-body simulations | `hamiltonian_type`, `system_size`, `bond_dimension` | | `quantum_neural_network` | Train QNNs | `input_data`, `labels`, `n_qubits`, `n_layers` | ### Supported Backends - **Qiskit**: `qasm_simulator`, `statevector_simulator`, `unitary_simulator` - **Cirq**: `cirq_simulator` - **PennyLane**: `default.qubit`, `default.qubit.torch` ### Circuit Types - `empty`: Empty circuit - `bell`: Bell state preparation - `ghz`: GHZ state preparation - `qft`: Quantum Fourier transform - `random`: Random circuit ## ๐Ÿ— Architecture ``` Psi-MCP/ โ”œโ”€โ”€ src/ โ”‚ โ”œโ”€โ”€ server.py # Main MCP server โ”‚ โ””โ”€โ”€ quantum/ # Quantum modules โ”‚ โ”œโ”€โ”€ __init__.py # Backend initialization โ”‚ โ”œโ”€โ”€ circuits.py # Circuit operations โ”‚ โ”œโ”€โ”€ systems.py # Open quantum systems โ”‚ โ”œโ”€โ”€ algorithms.py # Quantum algorithms โ”‚ โ”œโ”€โ”€ chemistry.py # Quantum chemistry โ”‚ โ”œโ”€โ”€ many_body.py # Many-body physics โ”‚ โ”œโ”€โ”€ field_theory.py # Quantum field theory โ”‚ โ”œโ”€โ”€ ml.py # Quantum ML โ”‚ โ”œโ”€โ”€ visualization.py # Visualization tools โ”‚ โ””โ”€โ”€ utils.py # Utility functions โ”œโ”€โ”€ tests/ # Test suite โ”œโ”€โ”€ docs/ # Documentation โ”œโ”€โ”€ smithery.yaml # Smithery configuration โ”œโ”€โ”€ Dockerfile # Container configuration โ”œโ”€โ”€ requirements.txt # Python dependencies โ””โ”€โ”€ README.md # This file ``` ## ๐Ÿงช Examples ### Complete Workflow Example ```python # 1. Create and simulate a quantum circuit circuit_result = create_quantum_circuit( num_qubits=3, circuit_type="ghz", backend="qasm_simulator" ) # 2. Simulate the circuit simulation_result = simulate_quantum_circuit( circuit_definition=circuit_result['id'], shots=1000, backend="qasm_simulator" ) # 3. Visualize the results plot_result = plot_measurement_results( counts=simulation_result['counts'], title="GHZ State Measurement" ) # 4. Analyze entanglement entropy = calculate_entanglement_entropy( circuit_definition=circuit_result['id'], subsystem_size=1 ) ``` ### Quantum Chemistry Workflow ```python # 1. Generate molecular Hamiltonian hamiltonian = generate_molecular_hamiltonian( molecule="H2", basis="sto-3g" ) # 2. Run VQE calculation vqe_result = vqe_chemistry( molecule="H2", basis="sto-3g", ansatz="uccsd" ) # 3. Compute molecular properties properties = compute_molecular_properties( molecule="H2", method="hf", basis="sto-3g" ) ``` ## ๐Ÿ”ฌ Advanced Features ### Custom Hamiltonians ```python # Define custom spin chain solve_master_equation( hamiltonian=json.dumps([[1, 0], [0, -1]]), collapse_operators="custom_operators", initial_state="custom_state" ) ``` ### GPU Acceleration ```python # Enable GPU support configure_server( enable_gpu=True, computing_backend="gpu_simulator" ) ``` ### Parallel Processing ```python # Parallel circuit simulation simulate_circuits_parallel( circuit_definitions=["circuit_1", "circuit_2", "circuit_3"], shots=1000 ) ``` ## ๐Ÿ“Š Performance ### Benchmarks | Operation | System Size | Execution Time | Memory Usage | |-----------|-------------|----------------|--------------| | Circuit Simulation | 20 qubits | ~2s | ~100MB | | VQE Optimization | H2O molecule | ~30s | ~200MB | | DMRG Calculation | 50 sites | ~60s | ~500MB | | QNN Training | 100 samples | ~45s | ~150MB | ### Scaling - **Quantum Circuits**: Up to 30 qubits (simulator dependent) - **Many-Body Systems**: Up to 100 sites with DMRG - **Molecular Systems**: Up to 20 orbitals with VQE - **ML Training**: Up to 1000 samples efficiently ## ๐Ÿค Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details. ### Development Setup ```bash # Clone and install development dependencies git clone https://github.com/manasp21/Psi-MCP.git cd Psi-MCP pip install -r requirements.txt pip install -e .[dev] # Run tests pytest tests/ # Format code black src/ tests/ isort src/ tests/ # Type checking mypy src/ ``` ## ๐Ÿ“„ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## ๐Ÿ™ Acknowledgments - **Qiskit Team** for quantum computing framework - **QuTiP Developers** for open quantum systems tools - **PennyLane Team** for quantum machine learning - **OpenFermion Contributors** for quantum chemistry tools - **Smithery Platform** for MCP server hosting ## ๐Ÿ“ž Support - **GitHub Issues**: [Report bugs or request features](https://github.com/manasp21/Psi-MCP/issues) - **Documentation**: [Full API documentation](https://github.com/manasp21/Psi-MCP/docs) - **Examples**: [Jupyter notebooks with examples](https://github.com/manasp21/Psi-MCP/examples) ## ๐Ÿ—บ Roadmap ### v1.1.0 (Next Release) - [ ] ITensor integration for tensor networks - [ ] NetKet support for neural quantum states - [ ] Advanced error mitigation tools - [ ] Quantum error correction codes ### v1.2.0 (Future) - [ ] Hardware backend support (IBM, Google, IonQ) - [ ] Advanced visualization dashboard - [ ] Quantum advantage benchmarks - [ ] Multi-user collaboration features --- <div align="center"> **Built with โค๏ธ for the quantum computing community** [๐ŸŒŸ Star us on GitHub](https://github.com/manasp21/Psi-MCP) | [๐Ÿ“– Read the Docs](https://github.com/manasp21/Psi-MCP/docs) | [๐Ÿš€ Deploy on Smithery](https://smithery.ai) </div>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/manasp21/Psi-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server