Skip to main content
Glama

Better Playwright MCP

by livoras

better-playwright-mcp3

A high-performance Playwright MCP (Model Context Protocol) server with intelligent DOM compression and content search capabilities for browser automation.

Features

  • 🎭 Full Playwright browser automation via MCP
  • 🏗️ Client-server architecture with HTTP API
  • 📍 Ref-based element identification system ([ref=e1], [ref=e2], etc.)
  • 🔍 Powerful regex-based content search using ripgrep
  • 💾 Persistent browser profiles with Chrome
  • 🚀 91%+ DOM compression with intelligent list folding
  • 📄 Semantic HTML snapshots using Playwright's internal APIs
  • ⚡ High-performance search with safety limits

Installation

Global Installation (for CLI usage)

npm install -g better-playwright-mcp3

Local Installation (for SDK usage)

npm install better-playwright-mcp3

Usage

As a JavaScript/TypeScript SDK

Prerequisites:

  1. First, start the HTTP server:
    npx better-playwright-mcp3@latest server
  2. Then use the SDK in your code:
import { PlaywrightClient } from 'better-playwright-mcp3'; async function automateWebPage() { // Connect to the HTTP server (must be running) const client = new PlaywrightClient('http://localhost:3102'); // Create a page const { pageId, success } = await client.createPage( 'my-page', // page name 'Test page', // description 'https://example.com' // URL ); // Get page structure with intelligent folding const outline = await client.getOutline(pageId); console.log(outline); // Returns compressed outline (~90% reduction) with list folding // Search for specific content (regex by default) const searchResult = await client.searchSnapshot(pageId, 'Example', { ignoreCase: true }); console.log(searchResult); // Search with regular expressions (default behavior) const prices = await client.searchSnapshot(pageId, '\\$[0-9]+\\.\\d{2}', { lineLimit: 10 }); // Search multiple patterns (OR) const links = await client.searchSnapshot(pageId, 'link|button|input', { ignoreCase: true }); // Interact with the page using ref identifiers await client.browserClick(pageId, 'e3'); // Click element await client.browserType(pageId, 'e4', 'Hello World'); // Type text await client.browserHover(pageId, 'e2'); // Hover over element // Navigation await client.browserNavigate(pageId, 'https://google.com'); await client.browserNavigateBack(pageId); await client.browserNavigateForward(pageId); // Scrolling await client.scrollToBottom(pageId); await client.scrollToTop(pageId); // Waiting await client.waitForTimeout(pageId, 2000); // Wait 2 seconds await client.waitForSelector(pageId, 'body'); // Take screenshots const screenshot = await client.screenshot(pageId, true); // Full page // Clean up await client.closePage(pageId); }

Available Methods:

  • Page Management: createPage, closePage, listPages
  • Navigation: browserNavigate, browserNavigateBack, browserNavigateForward
  • Interaction: browserClick, browserType, browserHover, browserSelectOption, fill
  • Advanced Actions: browserPressKey, browserFileUpload, browserHandleDialog
  • Page Structure: getOutline - Get intelligently compressed page structure with list folding (NEW in v3.2.0)
  • Content Search: searchSnapshot - Search page content with regex patterns (powered by ripgrep)
  • Screenshots: screenshot - Capture page as image
  • Scrolling: scrollToBottom, scrollToTop
  • Waiting: waitForTimeout, waitForSelector

MCP Server Mode

The MCP server requires an HTTP server to be running. You need to start both:

Step 1: Start the HTTP server

npx better-playwright-mcp3@latest server

Step 2: In another terminal, start the MCP server

npx better-playwright-mcp3@latest

The MCP server will:

  1. Start listening on stdio for MCP protocol messages
  2. Connect to the HTTP server on port 3102
  3. Route browser automation commands through the HTTP server

Standalone HTTP Server Mode

You can run the HTTP server independently:

npx better-playwright-mcp3@latest server

Options:

  • -p, --port <number> - Server port (default: 3102)
  • --host <string> - Server host (default: localhost)
  • --headless - Run browser in headless mode
  • --chromium - Use Chromium instead of Chrome
  • --no-user-profile - Do not use persistent user profile
  • --user-data-dir <path> - User data directory

MCP Tools

When used with AI assistants, the following tools are available:

Page Management

  • createPage - Create a new browser page with name and description
  • closePage - Close a specific page
  • listPages - List all managed pages with titles and URLs

Browser Actions

  • browserClick - Click an element using its ref identifier
  • browserType - Type text into an element
  • browserHover - Hover over an element
  • browserSelectOption - Select options in a dropdown
  • browserPressKey - Press keyboard keys
  • browserFileUpload - Upload files to file input
  • browserHandleDialog - Handle browser dialogs (alert, confirm, prompt)
  • browserNavigate - Navigate to a URL
  • browserNavigateBack - Go back to previous page
  • browserNavigateForward - Go forward to next page
  • scrollToBottom - Scroll to bottom of page/element
  • scrollToTop - Scroll to top of page/element
  • waitForTimeout - Wait for specified milliseconds
  • waitForSelector - Wait for element to appear

Content Search & Screenshots

  • searchSnapshot - Search page content using regex patterns (powered by ripgrep)
  • screenshot - Take a screenshot (PNG/JPEG)

Architecture

Intelligent DOM Compression (NEW in v3.2.0)

The outline generation uses a three-step compression algorithm:

  1. Unwrap - Remove meaningless generic wrapper nodes
  2. Text Truncation - Limit text content to 50 characters
  3. List Folding - Detect and compress repetitive patterns using SimHash
Original DOM (5000+ lines) ↓ [Remove empty wrappers] ↓ [Detect similar patterns] ↓ Compressed Outline (<500 lines, ~91% reduction)

Example compression:

// Before: 48 similar product cards - listitem [ref=e234]: Product 1 details... - listitem [ref=e235]: Product 2 details... - listitem [ref=e236]: Product 3 details... ... (45 more items) // After: Folded representation - listitem [ref=e234]: Product 1 details... - listitem (... and 47 more similar) [refs: e235, e236, ...]

System Architecture

This project implements a two-tier architecture optimized for minimal token usage:

  1. MCP Server - Communicates with AI assistants via Model Context Protocol
  2. HTTP Server - Controls browser instances and provides grep-based search
AI Assistant <--[MCP Protocol]--> MCP Server <--[HTTP]--> HTTP Server <---> Browser | v ripgrep engine

Key Design Principles

  • Minimal Token Usage: Intelligent compression reduces DOM by ~91%
  • On-Demand Search: Content retrieved via regex patterns when needed
  • Performance: Uses ripgrep for 10x+ faster searching
  • Safety: Automatic result limiting to prevent context overflow

Ref-Based Element System

Elements in snapshots are identified using ref attributes (e.g., [ref=e1], [ref=e2]). This system:

  • Provides stable identifiers for elements
  • Works with Playwright's internal aria-ref selectors
  • Enables precise element targeting across page changes

Example snapshot:

- generic [ref=e2]: - heading "Example Domain" [level=1] [ref=e3] - paragraph [ref=e4]: This domain is for use in illustrative examples - link "More information..." [ref=e5] [cursor=pointer]

Examples

Creating and Navigating Pages

// Create a page const { pageId, success } = await client.createPage( 'shopping', 'Amazon shopping page', 'https://amazon.com' ); // Navigate to another URL await client.browserNavigate(pageId, 'https://google.com'); // Go back/forward await client.browserNavigateBack(pageId); await client.browserNavigateForward(pageId);

Getting Page Structure (Enhanced in v3.2.0)

// Get intelligently compressed page outline const outline = await client.getOutline(pageId); console.log(outline); // Example output showing list folding: // Page Outline (473/5257 lines): // - banner [ref=e1] // - navigation [ref=e2] // - list "Products" [ref=e3] // - listitem "Product 1" [ref=e4] // - listitem (... and 47 more similar) [refs: e5, e6, ...] // // Compression: 91% reduction while preserving all refs

Searching Content

// Search for text (case insensitive) const results = await client.searchSnapshot(pageId, 'product', { ignoreCase: true }); // Search with regular expression (default behavior) const emails = await client.searchSnapshot(pageId, '[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-z]+'); // Search multiple patterns (OR) const buttons = await client.searchSnapshot(pageId, 'button|submit|click', { ignoreCase: true }); // Search for prices with dollar sign const prices = await client.searchSnapshot(pageId, '\\$\\d+\\.\\d{2}'); // Limit number of result lines const firstTen = await client.searchSnapshot(pageId, 'item', { lineLimit: 10 });

Search Options:

  • pattern (required) - Regex pattern to search for
  • ignoreCase (optional) - Case insensitive search (default: false)
  • lineLimit (optional) - Maximum lines to return (default: 100, max: 100)

Response Format:

  • result - Matched text content
  • matchCount - Total number of matches found
  • truncated - Whether results were truncated due to line limit

Interacting with Elements

// Click on element using its ref identifier await client.browserClick(pageId, 'e3'); // Type text into input field await client.browserType(pageId, 'e4', 'search query'); // Hover over element await client.browserHover(pageId, 'e2'); // Press keyboard key await client.browserPressKey(pageId, 'Enter');

Scrolling and Waiting

// Scroll page await client.scrollToBottom(pageId); await client.scrollToTop(pageId); // Wait operations await client.waitForTimeout(pageId, 2000); // Wait 2 seconds await client.waitForSelector(pageId, '#my-element');

Best Practices for AI Assistants

When using this library with AI assistants, follow this optimized workflow for maximum efficiency:

1. Start with Page Outline (Always First Step)
// Always begin by getting the compressed page structure const outline = await client.getOutline(pageId); // Returns intelligently compressed view with ~91% reduction

The outline provides:

  • Complete page structure with intelligent list folding
  • First element of each pattern preserved as sample
  • All ref identifiers for precise element targeting
  • Clear indication of repetitive patterns (e.g., "... and 47 more similar")
2. Use Outline to Guide Precise Searches
// Based on outline understanding, perform targeted searches const searchResults = await client.searchSnapshot(pageId, 'specific term', { ignoreCase: true, lineLimit: 10 }); // Now you know exactly what to search for and where it might be
3. Take Actions with Verified Ref IDs
// Use ref IDs discovered from outline or grep, not guesswork await client.browserClick(pageId, 'e42'); // Ref ID confirmed from outline

Why This Approach?

Token Efficiency: Compressed outline (typically <500 lines) + targeted searches use far fewer tokens than full snapshots (often 5000+ lines)

Accuracy: The outline shows actual page structure, preventing incorrect assumptions about element locations

Smart Compression: The algorithm preserves one sample from each pattern group, so AI understands the structure without seeing all repetitions

Anti-Patterns to Avoid

Don't blindly try random ref IDs without verification ❌ Don't request full snapshots that exceed token limits ❌ Don't make assumptions about page structure without checking the outline first ❌ Don't use generic search patterns when specific ones would be more efficient

Example: Searching Amazon Products

// GOOD: Outline-first approach const outline = await client.getOutline(pageId); // Shows: "- listitem [ref=e234]: [first product]" // "- listitem (... and 47 more similar) [refs: e235, e236, ...]" // Now search for specific product attributes const prices = await client.searchSnapshot(pageId, '\\$\\d+\\.\\d{2}', { lineLimit: 10 }); // BAD: Blind searching without context const results = await client.searchSnapshot(pageId, 'product', { ignoreCase: true }); // Too generic await client.browserClick(pageId, 'e1'); // Guessing ref IDs

Development

Prerequisites

  • Node.js >= 18.0.0
  • TypeScript
  • Chrome or Chromium browser

Building from Source

# Clone the repository git clone https://github.com/yourusername/better-playwright-mcp.git cd better-playwright-mcp # Install dependencies npm install # Build the project npm run build # Run in development mode npm run dev

Project Structure

better-playwright-mcp3/ ├── src/ │ ├── index.ts # Main export file │ ├── mcp-server.ts # MCP server implementation │ ├── client/ │ │ └── playwright-client.ts # HTTP client for browser automation │ ├── server/ │ │ └── playwright-server.ts # HTTP server controlling browsers │ └── utils/ │ ├── smart-outline-simple.ts # Intelligent outline generation │ ├── list-detector.ts # Pattern detection using SimHash │ ├── dom-simhash.ts # SimHash implementation │ └── remove-useless-wrappers.ts # DOM cleanup ├── bin/ │ └── cli.js # CLI entry point ├── docs/ │ └── architecture.md # Detailed architecture documentation ├── package.json ├── tsconfig.json └── README.md

Troubleshooting

Common Issues

  1. Port already in use
    • Change the port using -p flag: npx better-playwright-mcp3 server -p 3103
    • Or set environment variable: PORT=3103 npx better-playwright-mcp3 server
  2. Browser not launching
    • Ensure Chrome or Chromium is installed
    • Try using --chromium flag for Chromium
    • Check system resources
  3. Element not found
    • Verify the ref identifier exists in outline
    • Use searchSnapshot() to search for elements
    • Wait for elements using waitForSelector()
  4. Search returns too many results
    • Use more specific patterns
    • Use lineLimit option to limit results
    • Leverage regex features for precise matching

Debug Mode

Enable detailed logging:

DEBUG=* npx better-playwright-mcp3

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT

Related MCP Servers

  • A
    security
    F
    license
    A
    quality
    Enables AI agents to interact with web browsers using natural language, featuring automated browsing, form filling, vision-based element detection, and structured JSON responses for systematic browser control.
    Last updated -
    51
    • Linux
    • Apple
  • -
    security
    A
    license
    -
    quality
    Enables browser automation and real-time computer vision tasks through AI-driven commands, offering zero-cost digital navigation and interaction for enhanced web experiences.
    Last updated -
    0
    1
    MIT License
  • -
    security
    F
    license
    -
    quality
    Provides browser automation capabilities through an API endpoint that interprets natural language commands to perform web tasks using OpenAI's GPT models.
    Last updated -
  • A
    security
    A
    license
    A
    quality
    AI-driven browser automation server that implements the Model Context Protocol to enable natural language control of web browsers for tasks like navigation, form filling, and visual interaction.
    Last updated -
    1
    2
    MIT License
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/livoras/better-playwright-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server