Skip to main content
Glama
liqiongyu

Xueqiu MCP

by liqiongyu

earningforecast

Retrieve annual earnings forecast data for specific stocks to analyze company performance projections and inform investment decisions.

Instructions

按年度获取业绩预告数据

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
stock_codeNoSZ000002

Implementation Reference

  • main.py:92-96 (handler)
    The main handler function for the 'earningforecast' MCP tool. Decorated with @mcp.tool() for registration. Calls pysnowball.ball.earningforecast(stock_code), processes the result with process_data(), and returns a dict.
    @mcp.tool() def earningforecast(stock_code: str="SZ000002") -> dict: """按年度获取业绩预告数据""" result = ball.earningforecast(stock_code) return process_data(result)
  • main.py:93-94 (schema)
    Input/output schema defined by function signature: stock_code (str, default 'SZ000002') -> dict. Docstring: 'Get performance forecast data by year'.
    def earningforecast(stock_code: str="SZ000002") -> dict: """按年度获取业绩预告数据"""
  • main.py:34-61 (helper)
    Helper utility for processing raw data from pysnowball APIs. By default converts timestamps to readable datetime strings. Used by all tools including earningforecast.
    def process_data(data, process_config=None): """ 通用数据处理函数,可扩展添加各种数据处理操作 Args: data: 原始数据 process_config: 处理配置字典,用于指定要执行的处理操作 例如: {'convert_timestamps': True, 'other_process': params} Returns: 处理后的数据 """ if process_config is None: # 默认配置 process_config = { 'convert_timestamps': True } # 如果开启了时间戳转换 if process_config.get('convert_timestamps', True): data = convert_timestamps(data) # 在这里可以添加更多的数据处理逻辑 # 例如: # if 'format_numbers' in process_config: # data = format_numbers(data, **process_config['format_numbers']) return data
  • main.py:14-31 (helper)
    Supporting recursive function to convert timestamp fields (and _date fields) in nested data structures to formatted datetime strings. Called by process_data.
    def convert_timestamps(data): """递归地将数据中的所有 timestamp 转换为 datetime 字符串""" if isinstance(data, dict): for key, value in list(data.items()): if key == 'timestamp' and isinstance(value, (int, float)) and value > 1000000000000: # 毫秒级时间戳 data[key] = datetime.datetime.fromtimestamp(value/1000).strftime('%Y-%m-%d %H:%M:%S') elif key == 'timestamp' and isinstance(value, (int, float)) and value > 1000000000: # 秒级时间戳 data[key] = datetime.datetime.fromtimestamp(value).strftime('%Y-%m-%d %H:%M:%S') elif key.endswith('_date') and isinstance(value, (int, float)) and value > 1000000000000: # 毫秒级时间戳 data[key] = datetime.datetime.fromtimestamp(value/1000).strftime('%Y-%m-%d %H:%M:%S') elif key.endswith('_date') and isinstance(value, (int, float)) and value > 1000000000: # 秒级时间戳 data[key] = datetime.datetime.fromtimestamp(value).strftime('%Y-%m-%d %H:%M:%S') elif isinstance(value, (dict, list)): data[key] = convert_timestamps(value) elif isinstance(data, list): for i, item in enumerate(data): data[i] = convert_timestamps(item) return data

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/liqiongyu/xueqiu_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server