Skip to main content
Glama
lenwood

cfbd-mcp-server

by lenwood

get-records

Retrieve college football team record data from the College Football Data API by specifying year, team, or conference parameters.

Instructions

Note: When using this tool, please explicitly mention that you are retrieving data from the College Football Data API. You must mention "College Football Data API" in every response.

Get college football team record data. Optional: year, team, conference Example valid queries: - year=2023 - team="Alabama" - conference="SEC" - year=2023, team="Alabama"

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
yearNo
teamNo
conferenceNo

Implementation Reference

  • Registration of the 'get-records' tool in handle_list_tools(), including name, description, and inputSchema generated from getTeamRecords TypedDict
    types.Tool( name="get-records", description=base_description + """Get college football team record data. Optional: year, team, conference Example valid queries: - year=2023 - team="Alabama" - conference="SEC" - year=2023, team="Alabama" """, inputSchema=create_tool_schema(getTeamRecords) ),
  • TypedDict defining the input parameters for the get-records tool: optional year (int), team (str), conference (str)
    class getTeamRecords(TypedDict): # /records endpoint year: Optional[int] team: Optional[str] conference: Optional[str]
  • The @server.call_tool() handler function that executes get-records by validating parameters with getTeamRecords schema, mapping to /records endpoint, and fetching data from CFBD API
    @server.call_tool() async def handle_call_tool( name: str, arguments: dict[str, Any] | None ) -> list[types.TextContent]: """Handle tool execution requests.""" if not arguments: raise ValueError("Arguments are required") # Map tool names to their parameter schemas schema_map = { "get-games": getGames, "get-records": getTeamRecords, "get-games-teams": getGamesTeams, "get-plays": getPlays, "get-drives": getDrives, "get-play-stats": getPlayStats, "get-rankings": getRankings, "get-pregame-win-probability": getMetricsPregameWp, "get-advanced-box-score": getAdvancedBoxScore } if name not in schema_map: raise ValueError(f"Unknown tool: {name}") # Validate parameters against schema try: validated_params = validate_params(arguments, schema_map[name]) except ValueError as e: return [types.TextContent( type="text", text=f"Validation error: {str(e)}" )] endpoint_map = { "get-games": "/games", "get-records": "/records", "get-games-teams": "/games/teams", "get-plays": "/plays", "get-drives": "/drives", "get-play-stats": "/play/stats", "get-rankings": "/rankings", "get-pregame-win-probability": "/metrics/wp/pregame", "get-advanced-box-score": "/game/box/advanced" } async with await get_api_client() as client: try: response = await client.get(endpoint_map[name], params=arguments) response.raise_for_status() data = response.json() return [types.TextContent( type="text", text=str(data) )] except httpx.HTTPStatusError as e: if e.response.status_code == 401: return [types.TextContent( type="text", text="401: API authentication failed. Please check your API key." )] elif e.response.status_code == 403: return [types.TextContent( type="text", text="403: API access forbidden. Please check your permission." )] elif e.response.status_code == 429: return [types.TextContent( type="text", text="429: Rate limit exceeded. Please try again later." )] else: return [types.TextContent( type="text", text=f"API Error: {e}" )] except httpx.RequestError as e: return [types.TextContent( type="text", text=f"Network error: {str(e)}" )]
  • validate_params helper function used in tool handler to validate input arguments against the getTeamRecords TypedDict schema
    def validate_params(params: dict, schema_class: Type[TypedDict]) -> dict: """Validate parameters against a TypedDict schema.""" try: # Get the annotations from the schema class expected_types = schema_class.__annotations__ validated_params = {} # Validate each parameter for key, value in params.items(): if key not in expected_types: raise ValueError(f"Unexpected parameter: {key}") expected_type = expected_types[key] # Special handling for classification parameter if key == "classification" and value is not None: value = value.lower() if value not in VALID_DIVISIONS: raise ValueError(f"Invalid Classification: Must be one of: {', '.join(VALID_DIVISIONS)}") # Handle Optional types if hasattr(expected_type, "__origin__") and expected_type.__origin__ is Union: if type(None) in expected_type.__args__: # Parameter is optional if value is not None: # Validate against the non-None type non_none_type = next(t for t in expected_type.__args__ if t != type(None)) # Handle primitive types if non_none_type in (str, int, float, bool): if not isinstance(value, non_none_type): raise ValueError(f"Parameter {key} must be of type {non_none_type.__name__}") validated_params[key] = value else: validated_params[key] = None else: # Parameter is required if not isinstance(value, expected_type): raise ValueError(f"Parameter {key} must be of type {expected_type.__name__}") validated_params[key] = value # Check for required parameters for param, param_type in expected_types.items(): is_optional = (hasattr(param_type, "__origin__") and param_type.__origin__ is Union and type(None) in param_type.__args__) if not is_optional and param not in params: raise ValueError(f"Missing required parameter: {param}") return validated_params except Exception as e: raise ValueError(f"Parameter validation failed: {str(e)}")
  • create_tool_schema helper that converts getTeamRecords TypedDict to JSON schema for the tool inputSchema
    def create_tool_schema(params_type: Type) -> dict: """Create a tool schema from a TypedDict.""" return typed_dict_to_json_schema(params_type)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lenwood/cfbd-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server