Skip to main content
Glama
lenwood

cfbd-mcp-server

by lenwood

get-plays

Retrieve detailed college football play-by-play data from the College Football Data API by specifying year and week, with optional filters for teams, conferences, and play types.

Instructions

Note: When using this tool, please explicitly mention that you are retrieving data from the College Football Data API. You must mention "College Football Data API" in every response.

Get college football play-by-play data. Required: year AND week Optional: season_type, team, offense, defense, conference, offense_conference, defense_conference, play_type, classification Example valid queries: - year=2023, week=1 - year=2023, week=1, team="Alabama" - year=2023, week=1, offense="Alabama", defense="Auburn"

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
yearYes
weekYes
season_typeNo
teamNo
offenseNo
defenseNo
conferenceNo
offense_conferenceNo
defense_conferenceNo
play_typeNo
classificationNo

Implementation Reference

  • The main handler function for all tools including get-plays. It validates input using the getPlays schema, maps 'get-plays' to the '/plays' endpoint, makes an authenticated HTTP GET request to the College Football Data API, and returns the JSON response as text content.
    @server.call_tool() async def handle_call_tool( name: str, arguments: dict[str, Any] | None ) -> list[types.TextContent]: """Handle tool execution requests.""" if not arguments: raise ValueError("Arguments are required") # Map tool names to their parameter schemas schema_map = { "get-games": getGames, "get-records": getTeamRecords, "get-games-teams": getGamesTeams, "get-plays": getPlays, "get-drives": getDrives, "get-play-stats": getPlayStats, "get-rankings": getRankings, "get-pregame-win-probability": getMetricsPregameWp, "get-advanced-box-score": getAdvancedBoxScore } if name not in schema_map: raise ValueError(f"Unknown tool: {name}") # Validate parameters against schema try: validated_params = validate_params(arguments, schema_map[name]) except ValueError as e: return [types.TextContent( type="text", text=f"Validation error: {str(e)}" )] endpoint_map = { "get-games": "/games", "get-records": "/records", "get-games-teams": "/games/teams", "get-plays": "/plays", "get-drives": "/drives", "get-play-stats": "/play/stats", "get-rankings": "/rankings", "get-pregame-win-probability": "/metrics/wp/pregame", "get-advanced-box-score": "/game/box/advanced" } async with await get_api_client() as client: try: response = await client.get(endpoint_map[name], params=arguments) response.raise_for_status() data = response.json() return [types.TextContent( type="text", text=str(data) )] except httpx.HTTPStatusError as e: if e.response.status_code == 401: return [types.TextContent( type="text", text="401: API authentication failed. Please check your API key." )] elif e.response.status_code == 403: return [types.TextContent( type="text", text="403: API access forbidden. Please check your permission." )] elif e.response.status_code == 429: return [types.TextContent( type="text", text="429: Rate limit exceeded. Please try again later." )] else: return [types.TextContent( type="text", text=f"API Error: {e}" )] except httpx.RequestError as e: return [types.TextContent( type="text", text=f"Network error: {str(e)}" )]
  • TypedDict defining the input parameters for the get-plays tool, used for validation and JSON schema generation.
    class getPlays(TypedDict): # /plays endpoint year: int week: int season_type: Optional[str] team: Optional[str] offense: Optional[str] defense: Optional[str] conference: Optional[str] offense_conference: Optional[str] defense_conference: Optional[str] play_type: Optional[int] classification: Optional[str]
  • Registration of the get-plays tool in the MCP server list_tools handler, including name, description, and input schema from getPlays TypedDict.
    types.Tool( name="get-plays", description=base_description + """Get college football play-by-play data. Required: year AND week Optional: season_type, team, offense, defense, conference, offense_conference, defense_conference, play_type, classification Example valid queries: - year=2023, week=1 - year=2023, week=1, team="Alabama" - year=2023, week=1, offense="Alabama", defense="Auburn" """, inputSchema=create_tool_schema(getPlays) ),
  • TypedDict defining the expected response structure from the /plays API endpoint.
    class PlaysResponse(TypedDict): # /plays response id: int drive_id: int game_id: int drive_number: int play_number: int offense: str offense_conference: Optional[str] # Optional since team might not have conference offense_score: int defense: str home: str away: str defense_conference: Optional[str] defense_score: int period: int clock: GameClock offense_timeouts: int defense_timeouts: int yard_line: int yards_to_goal: int down: Optional[int] # Optional since some plays might not have downs (kickoffs, etc) distance: Optional[int] yards_gained: int scoring: bool play_type: str play_text: str ppa: Optional[float] # Using float for predicted points added wallclock: Optional[str] # Timestamp of the play
  • Helper function used to generate the JSON schema for the tool inputSchema from the getPlays TypedDict.
    def create_tool_schema(params_type: Type) -> dict: """Create a tool schema from a TypedDict.""" return typed_dict_to_json_schema(params_type)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lenwood/cfbd-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server