Bing Search MCP Server
by leehanchung
# Development Guidelines
This document contains critical information about working with this codebase. Follow these guidelines precisely.
## Core Development Rules
1. Package Management
- ONLY use uv, NEVER pip
- Installation: `uv add package`
- Running tools: `uv run tool`
- Upgrading: `uv add --dev package --upgrade-package package`
- FORBIDDEN: `uv pip install`, `@latest` syntax
2. Code Quality
- Type hints required for all code
- Public APIs must have docstrings
- Functions must be focused and small
- Follow existing patterns exactly
- Line length: 88 chars maximum
3. Testing Requirements
- Framework: `uv run pytest`
- Async testing: use anyio, not asyncio
- Coverage: test edge cases and errors
- New features require tests
- Bug fixes require regression tests
- For commits fixing bugs or adding features based on user reports add:
```bash
git commit --trailer "Reported-by:<name>"
```
Where `<name>` is the name of the user.
- For commits related to a Github issue, add
```bash
git commit --trailer "Github-Issue:#<number>"
```
- NEVER ever mention a `co-authored-by` or similar aspects. In particular, never
mention the tool used to create the commit message or PR.
## Pull Requests
- Create a detailed message of what changed. Focus on the high level description of
the problem it tries to solve, and how it is solved. Don't go into the specifics of the
code unless it adds clarity.
- Always add `jerome3o-anthropic` and `jspahrsummers` as reviewer.
- NEVER ever mention a `co-authored-by` or similar aspects. In particular, never
mention the tool used to create the commit message or PR.
## Python Tools
## Code Formatting
1. Ruff
- Format: `uv run ruff format .`
- Check: `uv run ruff check .`
- Fix: `uv run ruff check . --fix`
- Critical issues:
- Line length (88 chars)
- Import sorting (I001)
- Unused imports
- Line wrapping:
- Strings: use parentheses
- Function calls: multi-line with proper indent
- Imports: split into multiple lines
2. Type Checking
- Tool: `uv run pyright`
- Requirements:
- Explicit None checks for Optional
- Type narrowing for strings
- Version warnings can be ignored if checks pass
3. Pre-commit
- Config: `.pre-commit-config.yaml`
- Runs: on git commit
- Tools: Prettier (YAML/JSON), Ruff (Python)
- Ruff updates:
- Check PyPI versions
- Update config rev
- Commit config first
## Error Resolution
1. CI Failures
- Fix order:
1. Formatting
2. Type errors
3. Linting
- Type errors:
- Get full line context
- Check Optional types
- Add type narrowing
- Verify function signatures
2. Common Issues
- Line length:
- Break strings with parentheses
- Multi-line function calls
- Split imports
- Types:
- Add None checks
- Narrow string types
- Match existing patterns
3. Best Practices
- Check git status before commits
- Run formatters before type checks
- Keep changes minimal
- Follow existing patterns
- Document public APIs
- Test thoroughly
## Project Information
- Building a Bing integration using the Model Context Protocol (MCP)
- This project implements an MCP server that will provide tools, resources, and capabilities to clients
- The MCP architecture allows exposing tools that clients (like Claude) can discover and execute
## Key Concepts
- MCP Server: Implements server-side protocol operations for exposing tools, managing resources, and providing prompt templates
- Transport Layer: Handles communication between clients and servers (using STDIO, SSE, etc.)
- Server Capabilities: Configuration for resources, tools, prompts, and logging support
- Tool Registration: Allows defining and implementing tools that clients can use
- Resource Registration: Manages URI-based resources that clients can access
- Prompt Registration: Handles prompt templates and request processing
## MCP Protocol Primitives
| Primitive | Control | Description | Example Use |
|-----------|-----------------------|-----------------------------------------------------|------------------------------|
| Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options |
| Resources | Application-controlled| Contextual data managed by the client application | File contents, API responses |
| Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates |
## Server Capabilities
| Capability | Feature Flag | Description |
|-------------|------------------------------|------------------------------------|
| `prompts` | `listChanged` | Prompt template management |
| `resources` | `subscribe`<br/>`listChanged`| Resource exposure and updates |
| `tools` | `listChanged` | Tool discovery and execution |
| `logging` | - | Server logging configuration |
| `completion`| - | Argument completion suggestions |
## Client Session Flow
- Initialize the connection
- List available prompts, resources, and tools
- Get prompts with arguments
- Read resources by URI
- Call tools with arguments
## Development Notes
- The project uses Python to implement an MCP server that will integrate with Bing search
- Will need to implement proper tool registrations, resource handling, and potentially prompt templates
- Error handling should follow MCP's comprehensive error management approach
- The server will likely use STDIO transport for communication
## Documentation Links
- [Model Context Protocol documentation](https://modelcontextprotocol.io)
- [Model Context Protocol specification](https://spec.modelcontextprotocol.io)
- [Officially supported servers](https://github.com/modelcontextprotocol/servers)