Skip to main content
Glama

start_container

Start a stopped container to resume its operations. Specify the container name or ID to initiate the container lifecycle process.

Instructions

Start a stopped container.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
containerYesContainer name or ID

Implementation Reference

  • The primary handler function for the 'start_container' tool. It extracts the container name from arguments, runs 'podman start' via the run_podman helper, and returns a success or error message.
    async def start_container(self, args: Dict[str, Any]) -> Dict[str, Any]: container = args.get("container") result = run_podman(["start", container]) return {"output": f"Started container: {container}" if result["success"] else f"Error: {result['stderr']}"}
  • JSON schema definition for the 'start_container' tool input, specifying the required 'container' string parameter.
    Tool( name="start_container", description="Start a stopped container", inputSchema={ "type": "object", "properties": { "container": { "type": "string", "description": "Container name or ID" } }, "required": ["container"] } ),
  • main_b.py:459-472 (registration)
    Registration of tool handlers in a dictionary used in handle_tools_call to map 'start_container' to its handler method.
    tool_handlers = { "list_containers": self.list_containers, "container_info": self.container_info, "start_container": self.start_container, "stop_container": self.stop_container, "restart_container": self.restart_container, "container_logs": self.container_logs, "run_container": self.run_container, "remove_container": self.remove_container, "exec_container": self.exec_container, "list_images": self.list_images, "pull_image": self.pull_image, "container_stats": self.container_stats, }
  • main.py:170-173 (handler)
    Alternative handler for 'start_container' using FastMCP decorator, which also serves as registration and schema via Pydantic Field.
    @mcp.tool(title="Start container", description="Start a stopped container.") def start_container(container: str = Field(..., description="Container name or ID")) -> str: result = run_podman(["start", container]) return f"Started container: {container}" if result["success"] else f"Error: {result['stderr']}"
  • Shared helper function that executes podman subprocess commands and returns structured results, used by the start_container handler.
    def run_podman(args: List[str]) -> Dict[str, Any]: """Run a podman command and capture output""" try: cmd = ["podman"] + args logger.info(f"Running command: {' '.join(cmd)}") result = subprocess.run( cmd, capture_output=True, text=True, timeout=30 ) return { "success": result.returncode == 0, "stdout": result.stdout.strip(), "stderr": result.stderr.strip(), "returncode": result.returncode, } except subprocess.TimeoutExpired: logger.error("Command timed out") return {"success": False, "stdout": "", "stderr": "Command timed out", "returncode": -1} except Exception as e: logger.error(f"Command error: {e}") return {"success": False, "stdout": "", "stderr": str(e), "returncode": -1}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kunwarmahen/podman-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server