Skip to main content
Glama

exec_container

Execute commands inside containers to run applications, perform maintenance tasks, or troubleshoot running processes within your containerized environment.

Instructions

Execute a command inside a container.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
containerYes
commandYesCommand to execute

Implementation Reference

  • Main handler implementation for exec_container tool. Parses args, runs 'podman exec <container> <command>' using run_podman helper, returns stdout or error message.
    async def exec_container(self, args: Dict[str, Any]) -> Dict[str, Any]: container = args.get("container") command = args.get("command", []) cmd_args = ["exec", container] + command result = run_podman(cmd_args) return {"output": result["stdout"] if result["success"] else f"Error: {result['stderr']}"}
  • Input schema and registration in the tools list for the exec_container tool.
    Tool( name="exec_container", description="Execute a command inside a container", inputSchema={ "type": "object", "properties": { "container": { "type": "string", "description": "Container name or ID" }, "command": { "type": "array", "items": {"type": "string"}, "description": "Command to execute" } }, "required": ["container", "command"] } ),
  • main_b.py:459-472 (registration)
    Mapping of tool name 'exec_container' to its handler method in the dispatch dictionary used by handle_tools_call.
    tool_handlers = { "list_containers": self.list_containers, "container_info": self.container_info, "start_container": self.start_container, "stop_container": self.stop_container, "restart_container": self.restart_container, "container_logs": self.container_logs, "run_container": self.run_container, "remove_container": self.remove_container, "exec_container": self.exec_container, "list_images": self.list_images, "pull_image": self.pull_image, "container_stats": self.container_stats, }
  • main.py:239-246 (handler)
    Alternative handler implementation using FastMCP decorator @mcp.tool, which also defines input schema via Pydantic Field. Executes podman exec similarly.
    @mcp.tool(title="Exec in container", description="Execute a command inside a container.") def exec_container( container: str = Field(...), command: List[str] = Field(..., description="Command to execute"), ) -> str: args = ["exec", container] + command result = run_podman(args) return result["stdout"] if result["success"] else f"Error: {result['stderr']}"
  • Shared helper function used by exec_container (and other tools) to run podman subprocess commands and parse results.
    def run_podman(args: List[str]) -> Dict[str, Any]: """Run a podman command and capture output""" try: cmd = ["podman"] + args result = subprocess.run( cmd, capture_output=True, text=True, timeout=30 ) return { "success": result.returncode == 0, "stdout": result.stdout.strip(), "stderr": result.stderr.strip(), "returncode": result.returncode, } except subprocess.TimeoutExpired: return {"success": False, "stdout": "", "stderr": "Command timed out", "returncode": -1} except Exception as e: return {"success": False, "stdout": "", "stderr": str(e), "returncode": -1}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kunwarmahen/podman-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server