Skip to main content
Glama
kmaneesh

BioPython MCP Server

by kmaneesh

pubmed_fetch

Retrieve open access full-text articles from PubMed Central using PMC IDs. Supports XML or plain text formats for structured biomedical research content.

Instructions

Fetch full-text article from PubMed Central (PMC).

This function retrieves open access full-text articles from PMC using the PMC OAI service. Only works for open access articles that have a PMC ID.

Args: pmc_id: PMC identifier (with or without 'PMC' prefix, e.g., "PMC123456" or "123456") format: Output format - "xml" for structured XML or "text" for plain text (default: "xml") timeout: Request timeout in seconds (default: 30)

Returns: Dictionary containing the full-text article and metadata: - success (bool): Whether fetch was successful - pmc_id (str): The PMC identifier - format (str): Format of returned content - content (str): Full-text article content - content_length (int): Length of content in characters - error (str): Error message if unsuccessful

Examples: >>> result = pubmed_fetch("PMC3539452") >>> if result["success"]: ... print(result["content"][:100])

>>> result = pubmed_fetch("3539452", format="text") >>> print(result["content"])

Note: - Only works for open access articles - Articles without PMC IDs cannot be fetched - Rate limiting applies (use with entrez_rate_limit context manager) - XML format preserves structure (sections, figures, tables, references) - Text format provides simplified plain text extraction

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
pmc_idYes
formatNoxml
timeoutNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kmaneesh/biopython-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server