Skip to main content
Glama
keyurgit45

Expense Tracker MCP

by keyurgit45

Expense Tracker Backend

AI-powered expense tracking system with natural language interface, intelligent categorization, and real-time sync.

Architecture

The system uses a two-server architecture:

  1. MCP Server: Core expense tracking tools exposed via Model Context Protocol

  2. Gemini AI Server: FastAPI server providing chat interface with authentication

Features

  • šŸ¤– Natural language expense management via Gemini AI

  • 🧠 Intelligent categorization using embeddings and similarity search

  • šŸ” JWT authentication with Supabase

  • šŸ“Š Hierarchical categories for organization

  • šŸ·ļø Predefined tag system

  • šŸ“ˆ Real-time data sync

  • šŸ”„ Learning system that improves over time

Quick Start

Prerequisites

python3 -m venv venv source venv/bin/activate pip install -r requirements.txt

Environment Setup

cp .env.example .env # Add your credentials: # - SUPABASE_URL # - SUPABASE_KEY # - GOOGLE_API_KEY (for Gemini)

Database Setup

Execute the SQL scripts in your Supabase SQL Editor:

# Core tables scripts/create_tables.sql # Embeddings support scripts/create_embeddings_schema.sql

Run Both Servers

Terminal 1 - MCP Server:

python run_mcp.py

Terminal 2 - Gemini AI Server:

uvicorn app.servers.gemini.main:app --reload --port 8000

Initialize Data

# Populate categories python scripts/populate_hierarchical_categories.py # Populate predefined tags python scripts/populate_predefined_tags.py

API Endpoints

Chat Interface

  • POST /chat - Send natural language commands

  • POST /auth/refresh - Refresh JWT token

MCP Tools (via chat)

  • Create expenses from natural language

  • Auto-categorize transactions

  • Get spending summaries

  • Analyze subscriptions

  • View recent transactions

Flutter Client

refer https://github.com/keyurgit45/expense-tracker-client

Testing

# Run all tests with mocks ENVIRONMENT=test pytest tests/ -v # Run specific components ENVIRONMENT=test pytest tests/test_mcp_tools.py -v ENVIRONMENT=test pytest tests/test_categorization.py -v

Project Structure

backend/ ā”œā”€ā”€ app/ │ ā”œā”€ā”€ core/ # Business logic │ ā”œā”€ā”€ servers/ │ │ ā”œā”€ā”€ gemini/ # AI chat server │ │ └── mcp/ # MCP tool server │ └── shared/ # Shared configs ā”œā”€ā”€ scripts/ # Utilities └── tests/ # Test suite

AI Categorization

The system uses a hybrid approach:

  1. Generates embeddings for transactions using Sentence Transformers

  2. Finds similar past transactions using pgvector

  3. Uses weighted voting to predict categories

  4. Falls back to rule-based matching

  5. Learns from user confirmations

Development

  • API docs: http://localhost:8000/docs

  • Frontend integration: Configure CORS in Gemini server

  • MCP tools can be tested directly via chat interface

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keyurgit45/expense-tracker-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server