Skip to main content
Glama

qwen3_code_review

Review code for quality and issues using AI analysis. Submit code with its programming language to receive feedback on improvements and potential problems.

Instructions

Review code using Qwen3-Coder

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
codeYesThe code to review
languageNoProgramming language of the code

Implementation Reference

  • The handler logic for the 'qwen3_code_review' tool. It constructs a prompt with the provided code and language, then calls the shared callQwen3Coder function to get the AI response.
    case "qwen3_code_review": prompt = `Please review the following ${args.language || 'code'} and provide feedback on code quality, potential bugs, best practices, and suggestions for improvement: \`\`\`${args.language || ''} ${args.code} \`\`\` Please provide a detailed code review with specific suggestions.`; result = await callQwen3Coder(prompt); break;
  • The input schema defining the parameters for the qwen3_code_review tool: requires 'code' string, optional 'language' string.
    inputSchema: { type: "object", properties: { code: { type: "string", description: "The code to review" }, language: { type: "string", description: "Programming language of the code" } }, required: ["code"] }
  • Registration of the qwen3_code_review tool in the ListTools response, including name, description, and schema.
    { name: "qwen3_code_review", description: "Review code using Qwen3-Coder", inputSchema: { type: "object", properties: { code: { type: "string", description: "The code to review" }, language: { type: "string", description: "Programming language of the code" } }, required: ["code"] } },
  • Shared helper function that spawns Ollama process to run qwen3-coder:30b model with the given prompt and returns the output.
    async function callQwen3Coder(prompt, options = {}) { return new Promise((resolve, reject) => { const ollamaProcess = spawn('ollama', ['run', 'qwen3-coder:30b', prompt], { stdio: ['pipe', 'pipe', 'pipe'] }); let output = ''; let error = ''; ollamaProcess.stdout.on('data', (data) => { output += data.toString(); }); ollamaProcess.stderr.on('data', (data) => { error += data.toString(); }); ollamaProcess.on('close', (code) => { if (code === 0) { resolve(output.trim()); } else { reject(new Error(`Ollama process exited with code ${code}: ${error}`)); } }); // Set timeout for long-running requests setTimeout(() => { ollamaProcess.kill(); reject(new Error('Request timeout')); }, options.timeout || 120000); // 2 minutes default timeout }); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keithah/qwen3-coder-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server