Skip to main content
Glama

qwen3_code_generate

Generate code from natural language prompts for specified programming languages using the Qwen3-Coder AI model.

Instructions

Generate code using Qwen3-Coder

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
languageNoTarget programming language
promptYesDescription of what code to generate

Implementation Reference

  • Handler for the qwen3_code_generate tool. Constructs a specific prompt using the input arguments (prompt and optional language) and calls the shared callQwen3Coder helper to generate the response via Ollama.
    case "qwen3_code_generate": prompt = `Generate ${args.language || 'code'} for the following requirement: ${args.prompt} ${args.language ? `Please write the code in ${args.language}.` : ''} Provide clean, well-documented code with explanations.`; result = await callQwen3Coder(prompt); break;
  • Registration of the qwen3_code_generate tool in the list of tools returned by ListToolsRequestHandler, including name, description, and input schema.
    { name: "qwen3_code_generate", description: "Generate code using Qwen3-Coder", inputSchema: { type: "object", properties: { prompt: { type: "string", description: "Description of what code to generate" }, language: { type: "string", description: "Target programming language" } }, required: ["prompt"] } },
  • Input schema defining the parameters for qwen3_code_generate: required 'prompt' string and optional 'language' string.
    inputSchema: { type: "object", properties: { prompt: { type: "string", description: "Description of what code to generate" }, language: { type: "string", description: "Target programming language" } }, required: ["prompt"] }
  • Shared helper function that spawns an Ollama process to run the qwen3-coder:30b model with the given prompt, captures stdout as result, with timeout handling.
    async function callQwen3Coder(prompt, options = {}) { return new Promise((resolve, reject) => { const ollamaProcess = spawn('ollama', ['run', 'qwen3-coder:30b', prompt], { stdio: ['pipe', 'pipe', 'pipe'] }); let output = ''; let error = ''; ollamaProcess.stdout.on('data', (data) => { output += data.toString(); }); ollamaProcess.stderr.on('data', (data) => { error += data.toString(); }); ollamaProcess.on('close', (code) => { if (code === 0) { resolve(output.trim()); } else { reject(new Error(`Ollama process exited with code ${code}: ${error}`)); } }); // Set timeout for long-running requests setTimeout(() => { ollamaProcess.kill(); reject(new Error('Request timeout')); }, options.timeout || 120000); // 2 minutes default timeout }); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keithah/qwen3-coder-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server