Skip to main content
Glama

Keboola Explorer MCP Server

root_parameters_schema.json10.4 kB
{ "type": "object", "title": "Embeddings Configuration", "required": [ "embedding_settings" ], "properties": { "qdrant_settings": { "type": "object", "title": "Qdrant Settings", "options": { "dependencies": { "db_type": "qdrant" } }, "required": [ "url", "#api_key" ], "properties": { "url": { "type": "string", "title": "URL", "description": "Qdrant instance URL" }, "#api_key": { "type": "string", "title": "API Key", "format": "password" } } }, "embedding_settings": { "type": "object", "title": "Embedding Service Settings", "required": [ "provider_type" ], "properties": { "provider_type": { "enum": [ "openai", "azure_openai", "cohere", "huggingface_hub", "google_vertex", "bedrock" ], "type": "string", "title": "Embedding Provider", "options": { "tooltip": "Choose the AI service that will generate embeddings" }, "enumNames": [ "OpenAI", "Azure OpenAI", "Cohere", "HuggingFace Hub", "Google Vertex AI", "AWS Bedrock" ], "description": "Select the embedding service to use" }, "azure_settings": { "type": "object", "title": "Azure OpenAI Settings", "options": { "dependencies": { "provider_type": "azure_openai" } }, "required": [ "deployment_name", "#api_key", "azure_endpoint" ], "properties": { "#api_key": { "type": "string", "title": "API Key", "format": "password" }, "api_version": { "type": "string", "title": "API Version", "default": "2024-02-01" }, "azure_endpoint": { "type": "string", "title": "Azure Endpoint", "options": { "inputAttributes": { "placeholder": "https://<your-endpoint>.openai.azure.com/" } }, "description": "Your Azure OpenAI endpoint URL" }, "deployment_name": { "type": "string", "title": "Deployment Name", "description": "Enter your Azure OpenAI deployment name" } } }, "cohere_settings": { "type": "object", "title": "Cohere Settings", "options": { "dependencies": { "provider_type": "cohere" } }, "required": [ "model", "#api_key" ], "properties": { "model": { "enum": [ "embed-english-v3.0", "embed-english-light-v3.0", "embed-multilingual-v3.0", "embed-multilingual-light-v3.0" ], "type": "string", "title": "Model", "default": "embed-english-v3.0", "options": { "tooltip": "Light models are faster but less accurate" }, "description": "Select the Cohere embedding model" }, "#api_key": { "type": "string", "title": "API Key", "format": "password" } } }, "openai_settings": { "type": "object", "title": "OpenAI Settings", "options": { "dependencies": { "provider_type": "openai" } }, "required": [ "model", "#api_key" ], "properties": { "model": { "enum": [ "text-embedding-3-small", "text-embedding-3-large", "text-embedding-ada-002" ], "type": "string", "title": "Model", "default": "text-embedding-3-small", "options": { "tooltip": "text-embedding-3-small is recommended for most use cases" }, "description": "Select the OpenAI embedding model" }, "#api_key": { "type": "string", "title": "API Key", "format": "password" } } }, "bedrock_settings": { "type": "object", "title": "AWS Bedrock Settings", "options": { "dependencies": { "provider_type": "bedrock" } }, "required": [ "#aws_access_key", "#aws_secret_key", "region", "model_id" ], "properties": { "region": { "enum": [ "us-east-1", "us-west-2", "ap-southeast-1", "ap-northeast-1", "eu-central-1" ], "type": "string", "title": "AWS Region", "description": "AWS region where Bedrock is available" }, "model_id": { "enum": [ "amazon.titan-embed-text-v1", "amazon.titan-embed-g1-text-02", "cohere.embed-english-v3", "cohere.embed-multilingual-v3" ], "type": "string", "title": "Model ID", "default": "amazon.titan-embed-text-v1", "description": "Bedrock model identifier" }, "#aws_access_key": { "type": "string", "title": "AWS Access Key", "format": "password" }, "#aws_secret_key": { "type": "string", "title": "AWS Secret Key", "format": "password" } } }, "huggingface_settings": { "type": "object", "title": "HuggingFace Hub Settings", "options": { "dependencies": { "provider_type": "huggingface_hub" } }, "required": [ "model", "#api_key" ], "properties": { "model": { "type": "string", "title": "Model Name", "default": "sentence-transformers/all-mpnet-base-v2", "options": { "tooltip": "Recommended models: all-mpnet-base-v2, all-MiniLM-L6-v2, bge-large-en-v1.5", "inputAttributes": { "placeholder": "sentence-transformers/all-mpnet-base-v2" } }, "description": "Enter the HuggingFace model name" }, "#api_key": { "type": "string", "title": "API Key", "format": "password" }, "show_progress": { "type": "boolean", "title": "Show Progress", "default": false, "description": "Whether to show a progress bar during embedding generation" }, "normalize_embeddings": { "type": "boolean", "title": "Normalize Embeddings", "default": true, "description": "Whether to normalize the computed embeddings to unit length" } } }, "google_vertex_settings": { "type": "object", "title": "Google Vertex AI Settings", "options": { "dependencies": { "provider_type": "google_vertex" } }, "required": [ "#credentials", "project" ], "properties": { "project": { "type": "string", "title": "Project ID", "description": "Google Cloud project ID" }, "location": { "type": "string", "title": "Location", "default": "us-central1", "description": "Google Cloud region" }, "model_name": { "type": "string", "title": "Model Name", "default": "textembedding-gecko@latest", "description": "Vertex AI model name" }, "#credentials": { "type": "string", "title": "Service Account JSON", "format": "password", "description": "Google Cloud service account credentials JSON" } } } }, "propertyOrder": 200 }, "test_database_connection": { "type": "button", "format": "sync-action", "options": { "async": { "cache": false, "label": "Test Connection to Vector Store Database", "action": "testVectorStoreConnection" }, "hidden": true } }, "test_embedding_service_connection": { "type": "button", "format": "sync-action", "options": { "async": { "cache": false, "label": "Test Connection to Embedding Service", "action": "testEmbeddingServiceConnection" }, "hidden": true }, "propertyOrder": 300 } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keboola/keboola-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server