# Amazon Security Lake MCP Tool - Recommended Improvements
## π¨ Critical Issues Found
### 1. **Timestamp Query Bug (High Priority)**
**Problem**: The search tools fail with `TYPE_MISMATCH: Cannot apply operator: bigint <= timestamp(0)` errors.
**Root Cause**: Incompatible timestamp filtering in SQL queries when working with Iceberg tables.
**Fix Needed**:
```sql
-- Current (broken):
WHERE time <= 1735689600000 -- bigint compared to timestamp
-- Should be (fixed):
WHERE time <= TIMESTAMP '2025-01-01 00:00:00'
-- OR
WHERE CAST(time AS bigint) <= 1735689600000
-- OR
WHERE time <= from_unixtime(1735689600000/1000)
```
### 2. **Empty Results Despite Data Present**
**Problem**: Search functions return 0 results even though 25,224+ records exist in tables.
**Root Cause**: Query filtering logic prevents any data from being returned.
## π Recommended Code Changes
### Priority 1: Fix Timestamp Handling
**File**: Search query generation functions
```python
# Current problematic timestamp filtering
def build_time_filter(start_time, end_time):
# BROKEN: Direct bigint comparison to timestamp columns
return f"time >= {start_timestamp} AND time <= {end_timestamp}"
# FIXED: Proper timestamp handling for Iceberg tables
def build_time_filter(start_time, end_time):
if start_time:
start_ts = f"TIMESTAMP '{start_time}'"
if end_time:
end_ts = f"TIMESTAMP '{end_time}'"
filters = []
if start_time:
filters.append(f"time >= {start_ts}")
if end_time:
filters.append(f"time <= {end_ts}")
return " AND ".join(filters) if filters else "1=1"
```
### Priority 2: Improve Query Logic
**Current Issues**:
- Default time ranges may be too restrictive
- No fallback when time filters return empty results
- Hard-coded assumptions about data freshness
**Recommended Changes**:
```python
def search_security_lake_data(query_params):
# 1. Try query with time filters first
results = execute_query_with_filters(query_params)
# 2. If empty and time filters present, try without time filters
if not results and has_time_filters(query_params):
results = execute_query_without_time_filters(query_params)
# 3. If still empty, try a simple count to verify data exists
if not results:
count = execute_count_query(query_params.table)
if count > 0:
return {
"warning": f"Table has {count} records but filters returned no results",
"suggestion": "Try broader time range or remove filters"
}
return results
```
### Priority 3: Better Error Handling
```python
def execute_athena_query(sql_query):
try:
result = athena_client.start_query_execution(query_params)
return wait_for_completion(result['QueryExecutionId'])
except ClientError as e:
error_code = e.response['Error']['Code']
if 'TYPE_MISMATCH' in str(e):
return {
"error": "Timestamp format incompatibility",
"suggestion": "Check timestamp column formats in query",
"technical_detail": str(e)
}
elif 'COLUMN_NOT_FOUND' in str(e):
return {
"error": "Column not found - possible schema mismatch",
"suggestion": "Verify table schema matches OCSF version"
}
else:
return {"error": str(e)}
```
## π§ Feature Enhancements
### 1. **Schema Validation**
```python
def validate_table_schema(table_name):
"""Verify table schema matches expected OCSF format"""
schema = get_table_schema(table_name)
required_fields = ['time', 'severity', 'class_uid', 'metadata']
missing_fields = [f for f in required_fields if f not in schema]
if missing_fields:
return False, f"Missing required fields: {missing_fields}"
return True, "Schema valid"
```
### 2. **Data Freshness Check**
```python
def check_data_freshness(table_name):
"""Check when data was last updated"""
query = f"""
SELECT
MAX(time) as latest_record,
COUNT(*) as total_records,
COUNT(DISTINCT DATE(time)) as days_with_data
FROM {table_name}
"""
result = execute_query(query)
return {
"latest_data": result['latest_record'],
"total_records": result['total_records'],
"data_span_days": result['days_with_data']
}
```
### 3. **Flexible Querying**
```python
def adaptive_search(search_params):
"""Try multiple query strategies to find data"""
strategies = [
lambda: search_with_full_filters(search_params),
lambda: search_with_relaxed_time_filter(search_params),
lambda: search_without_time_filter(search_params),
lambda: search_recent_data_only(search_params)
]
for strategy in strategies:
try:
results = strategy()
if results and len(results) > 0:
return results
except Exception as e:
continue # Try next strategy
return {"error": "No data found with any search strategy"}
```
## π§ͺ Testing Recommendations
### 1. **Unit Tests for Timestamp Handling**
```python
def test_timestamp_conversion():
# Test various timestamp formats
test_cases = [
("2025-01-01T00:00:00Z", "ISO format"),
(1735689600000, "Unix milliseconds"),
(1735689600, "Unix seconds"),
]
for timestamp, description in test_cases:
result = convert_to_athena_timestamp(timestamp)
assert result.startswith("TIMESTAMP"), f"Failed for {description}"
```
### 2. **Integration Tests**
```python
def test_end_to_end_search():
# Test with known data
results = search_security_hub_findings({"limit": 1})
assert len(results) > 0, "Should find at least one record"
# Test with impossible filters
results = search_with_filters({"start_time": "2030-01-01"})
assert len(results) == 0, "Future date should return no results"
```
## π Monitoring & Debugging
### 1. **Query Performance Metrics**
```python
def log_query_performance(query, execution_time, result_count):
metrics = {
"query_hash": hashlib.md5(query.encode()).hexdigest(),
"execution_time_ms": execution_time,
"result_count": result_count,
"timestamp": datetime.utcnow().isoformat()
}
# Log to CloudWatch or local metrics
```
### 2. **Data Source Health Check**
```python
def health_check_all_sources():
"""Check all configured data sources"""
sources = ['security_hub', 'vpc_flow', 'route53', 'eks_audit', 'lambda_execution']
health_status = {}
for source in sources:
try:
count = get_record_count(source)
latest = get_latest_record_time(source)
health_status[source] = {
"status": "healthy" if count > 0 else "empty",
"record_count": count,
"latest_data": latest
}
except Exception as e:
health_status[source] = {"status": "error", "error": str(e)}
return health_status
```
## π― Implementation Priority
1. **Immediate (Critical)**:
- Fix timestamp TYPE_MISMATCH errors
- Add fallback queries when filters return empty results
2. **Short Term (1-2 weeks)**:
- Implement adaptive search strategies
- Add better error messages and suggestions
3. **Medium Term (1 month)**:
- Add comprehensive schema validation
- Implement data freshness monitoring
- Add performance metrics
4. **Long Term (Ongoing)**:
- Advanced query optimization
- Predictive data source health monitoring
- Auto-remediation for common issues
## π Key Files to Modify
Based on typical MCP tool structure:
- `src/amazon_security_lake/search.py` - Core search logic
- `src/amazon_security_lake/athena_client.py` - Query execution
- `src/amazon_security_lake/formatters.py` - Timestamp handling
- `tests/test_search_integration.py` - Add comprehensive tests
The tool is fundamentally well-designed but needs these critical bug fixes to unlock its full potential with the 25K+ Security Hub findings already available!