Skip to main content
Glama
kebabmane

Amazon Security Lake MCP Server

by kebabmane
security_lake_tool_improvements.mdβ€’8.2 kB
# Amazon Security Lake MCP Tool - Recommended Improvements ## 🚨 Critical Issues Found ### 1. **Timestamp Query Bug (High Priority)** **Problem**: The search tools fail with `TYPE_MISMATCH: Cannot apply operator: bigint <= timestamp(0)` errors. **Root Cause**: Incompatible timestamp filtering in SQL queries when working with Iceberg tables. **Fix Needed**: ```sql -- Current (broken): WHERE time <= 1735689600000 -- bigint compared to timestamp -- Should be (fixed): WHERE time <= TIMESTAMP '2025-01-01 00:00:00' -- OR WHERE CAST(time AS bigint) <= 1735689600000 -- OR WHERE time <= from_unixtime(1735689600000/1000) ``` ### 2. **Empty Results Despite Data Present** **Problem**: Search functions return 0 results even though 25,224+ records exist in tables. **Root Cause**: Query filtering logic prevents any data from being returned. ## πŸ“‹ Recommended Code Changes ### Priority 1: Fix Timestamp Handling **File**: Search query generation functions ```python # Current problematic timestamp filtering def build_time_filter(start_time, end_time): # BROKEN: Direct bigint comparison to timestamp columns return f"time >= {start_timestamp} AND time <= {end_timestamp}" # FIXED: Proper timestamp handling for Iceberg tables def build_time_filter(start_time, end_time): if start_time: start_ts = f"TIMESTAMP '{start_time}'" if end_time: end_ts = f"TIMESTAMP '{end_time}'" filters = [] if start_time: filters.append(f"time >= {start_ts}") if end_time: filters.append(f"time <= {end_ts}") return " AND ".join(filters) if filters else "1=1" ``` ### Priority 2: Improve Query Logic **Current Issues**: - Default time ranges may be too restrictive - No fallback when time filters return empty results - Hard-coded assumptions about data freshness **Recommended Changes**: ```python def search_security_lake_data(query_params): # 1. Try query with time filters first results = execute_query_with_filters(query_params) # 2. If empty and time filters present, try without time filters if not results and has_time_filters(query_params): results = execute_query_without_time_filters(query_params) # 3. If still empty, try a simple count to verify data exists if not results: count = execute_count_query(query_params.table) if count > 0: return { "warning": f"Table has {count} records but filters returned no results", "suggestion": "Try broader time range or remove filters" } return results ``` ### Priority 3: Better Error Handling ```python def execute_athena_query(sql_query): try: result = athena_client.start_query_execution(query_params) return wait_for_completion(result['QueryExecutionId']) except ClientError as e: error_code = e.response['Error']['Code'] if 'TYPE_MISMATCH' in str(e): return { "error": "Timestamp format incompatibility", "suggestion": "Check timestamp column formats in query", "technical_detail": str(e) } elif 'COLUMN_NOT_FOUND' in str(e): return { "error": "Column not found - possible schema mismatch", "suggestion": "Verify table schema matches OCSF version" } else: return {"error": str(e)} ``` ## πŸ”§ Feature Enhancements ### 1. **Schema Validation** ```python def validate_table_schema(table_name): """Verify table schema matches expected OCSF format""" schema = get_table_schema(table_name) required_fields = ['time', 'severity', 'class_uid', 'metadata'] missing_fields = [f for f in required_fields if f not in schema] if missing_fields: return False, f"Missing required fields: {missing_fields}" return True, "Schema valid" ``` ### 2. **Data Freshness Check** ```python def check_data_freshness(table_name): """Check when data was last updated""" query = f""" SELECT MAX(time) as latest_record, COUNT(*) as total_records, COUNT(DISTINCT DATE(time)) as days_with_data FROM {table_name} """ result = execute_query(query) return { "latest_data": result['latest_record'], "total_records": result['total_records'], "data_span_days": result['days_with_data'] } ``` ### 3. **Flexible Querying** ```python def adaptive_search(search_params): """Try multiple query strategies to find data""" strategies = [ lambda: search_with_full_filters(search_params), lambda: search_with_relaxed_time_filter(search_params), lambda: search_without_time_filter(search_params), lambda: search_recent_data_only(search_params) ] for strategy in strategies: try: results = strategy() if results and len(results) > 0: return results except Exception as e: continue # Try next strategy return {"error": "No data found with any search strategy"} ``` ## πŸ§ͺ Testing Recommendations ### 1. **Unit Tests for Timestamp Handling** ```python def test_timestamp_conversion(): # Test various timestamp formats test_cases = [ ("2025-01-01T00:00:00Z", "ISO format"), (1735689600000, "Unix milliseconds"), (1735689600, "Unix seconds"), ] for timestamp, description in test_cases: result = convert_to_athena_timestamp(timestamp) assert result.startswith("TIMESTAMP"), f"Failed for {description}" ``` ### 2. **Integration Tests** ```python def test_end_to_end_search(): # Test with known data results = search_security_hub_findings({"limit": 1}) assert len(results) > 0, "Should find at least one record" # Test with impossible filters results = search_with_filters({"start_time": "2030-01-01"}) assert len(results) == 0, "Future date should return no results" ``` ## πŸ“Š Monitoring & Debugging ### 1. **Query Performance Metrics** ```python def log_query_performance(query, execution_time, result_count): metrics = { "query_hash": hashlib.md5(query.encode()).hexdigest(), "execution_time_ms": execution_time, "result_count": result_count, "timestamp": datetime.utcnow().isoformat() } # Log to CloudWatch or local metrics ``` ### 2. **Data Source Health Check** ```python def health_check_all_sources(): """Check all configured data sources""" sources = ['security_hub', 'vpc_flow', 'route53', 'eks_audit', 'lambda_execution'] health_status = {} for source in sources: try: count = get_record_count(source) latest = get_latest_record_time(source) health_status[source] = { "status": "healthy" if count > 0 else "empty", "record_count": count, "latest_data": latest } except Exception as e: health_status[source] = {"status": "error", "error": str(e)} return health_status ``` ## 🎯 Implementation Priority 1. **Immediate (Critical)**: - Fix timestamp TYPE_MISMATCH errors - Add fallback queries when filters return empty results 2. **Short Term (1-2 weeks)**: - Implement adaptive search strategies - Add better error messages and suggestions 3. **Medium Term (1 month)**: - Add comprehensive schema validation - Implement data freshness monitoring - Add performance metrics 4. **Long Term (Ongoing)**: - Advanced query optimization - Predictive data source health monitoring - Auto-remediation for common issues ## πŸ” Key Files to Modify Based on typical MCP tool structure: - `src/amazon_security_lake/search.py` - Core search logic - `src/amazon_security_lake/athena_client.py` - Query execution - `src/amazon_security_lake/formatters.py` - Timestamp handling - `tests/test_search_integration.py` - Add comprehensive tests The tool is fundamentally well-designed but needs these critical bug fixes to unlock its full potential with the 25K+ Security Hub findings already available!

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kebabmane/asl-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server