# Amazon Security Lake MCP Server - Issue Analysis & Improvement Recommendations
## Executive Summary
The Amazon Security Lake MCP server tools are failing because they are hardcoded to expect specific table schemas and data sources that don't match real-world Security Lake deployments. The tools need to be made more flexible and dynamic.
## Root Cause Analysis
### 1. **Hardcoded Table Name Expectations**
- **MCP Tools Expect**: `amazon_security_lake_table_us_east_1_cloud_trail_mgmt_1_0`
- **MCP Tools Expect**: `amazon_security_lake_table_us_east_1_guardduty_1_0`
- **Actual Tables Available**:
- `amazon_security_lake_table_us_east_1_eks_audit_2_0`
- `amazon_security_lake_table_us_east_1_lambda_execution_2_0`
- `amazon_security_lake_table_us_east_1_route53_2_0`
- `amazon_security_lake_table_us_east_1_sh_findings_2_0`
- `amazon_security_lake_table_us_east_1_vpc_flow_2_0`
### 2. **OCSF Version Mismatch**
- **MCP Tools Expect**: OCSF 1.0 schema (`_1_0` suffix)
- **Actual Deployment**: OCSF 2.0 schema (`_2_0` suffix)
### 3. **Data Source Availability Assumptions**
- **MCP Tools Assume**: CloudTrail and GuardDuty are always enabled
- **Reality**: Users may have different data source combinations based on their specific needs
### 4. **Table Storage Format**
- **Actual Tables**: Use Apache Iceberg format with complex nested OCSF structures
- **MCP Tools**: May not properly handle Iceberg metadata and complex struct types
## Detailed Findings
### Current Security Lake Setup
```json
{
"account_id": "767398042573",
"region": "us-east-1",
"database": "amazon_security_lake_glue_db_us_east_1",
"total_tables": 5,
"table_format": "ICEBERG",
"ocsf_version": "2.0"
}
```
### Available Data Sources & Record Counts
```json
{
"eks_audit": {"records": 0, "status": "no_data"},
"lambda_execution": {"records": 4158, "status": "active"},
"route53": {"records": 0, "status": "no_data"},
"security_hub_findings": {"records": 25224, "status": "active"},
"vpc_flow": {"records": 0, "status": "no_data"}
}
```
### Error Pattern Analysis
All MCP tool failures show the same pattern:
```
TABLE_NOT_FOUND: line 2:14: Table 'awsdatacatalog.amazon_security_lake_glue_db_us_east_1.amazon_security_lake_table_us_east_1_cloud_trail_mgmt_1_0' does not exist
```
## Recommended MCP Server Improvements
### 1. **Dynamic Table Discovery**
Replace hardcoded table names with dynamic discovery:
```python
def discover_security_lake_tables(database_name: str) -> Dict[str, List[str]]:
"""
Discover available Security Lake tables and categorize by data source
"""
glue_client = boto3.client('glue')
tables = glue_client.get_tables(DatabaseName=database_name)
data_sources = {
'cloudtrail': [],
'guardduty': [],
'security_hub': [],
'vpc_flow': [],
'route53': [],
'eks_audit': [],
'lambda_execution': [],
'other': []
}
for table in tables['TableList']:
table_name = table['Name']
# Extract data source from table name pattern
if 'cloud_trail' in table_name:
data_sources['cloudtrail'].append(table_name)
elif 'guardduty' in table_name:
data_sources['guardduty'].append(table_name)
elif 'sh_findings' in table_name:
data_sources['security_hub'].append(table_name)
elif 'vpc_flow' in table_name:
data_sources['vpc_flow'].append(table_name)
elif 'route53' in table_name:
data_sources['route53'].append(table_name)
elif 'eks_audit' in table_name:
data_sources['eks_audit'].append(table_name)
elif 'lambda_execution' in table_name:
data_sources['lambda_execution'].append(table_name)
else:
data_sources['other'].append(table_name)
return data_sources
```
### 2. **Flexible OCSF Version Support**
Detect and handle both OCSF 1.0 and 2.0 schemas:
```python
def get_ocsf_version_from_table(table_name: str) -> str:
"""Extract OCSF version from table name"""
if '_1_0' in table_name:
return '1.0'
elif '_2_0' in table_name:
return '2.0'
else:
return 'unknown'
def build_query_for_ocsf_version(base_query: str, version: str, table_name: str) -> str:
"""Adapt query structure based on OCSF version"""
if version == '2.0':
# Handle OCSF 2.0 nested structures
return adapt_query_for_ocsf_v2(base_query, table_name)
else:
# Handle OCSF 1.0 flat structures
return adapt_query_for_ocsf_v1(base_query, table_name)
```
### 3. **Graceful Data Source Handling**
Check for data availability before querying:
```python
def check_data_source_availability(table_name: str) -> Dict[str, Any]:
"""
Check if a data source has available data
"""
athena_client = boto3.client('athena')
# Quick count query to check for data
query = f"SELECT COUNT(*) FROM {table_name} LIMIT 1"
try:
result = execute_athena_query(query)
count = int(result['ResultSet']['Rows'][1]['Data'][0]['VarCharValue'])
return {
'available': count > 0,
'record_count': count,
'status': 'active' if count > 0 else 'no_data'
}
except Exception as e:
return {
'available': False,
'record_count': 0,
'status': 'error',
'error': str(e)
}
```
### 4. **Enhanced Error Handling**
Provide meaningful feedback when data sources aren't available:
```python
def search_guardduty_findings(request: GuardDutySearchRequest) -> Dict[str, Any]:
"""
Search GuardDuty findings with improved error handling
"""
# Discover available tables
tables = discover_security_lake_tables(DATABASE_NAME)
if not tables['guardduty']:
return {
'success': False,
'error': 'GuardDuty data source not found',
'suggestions': [
'Enable GuardDuty in Security Lake',
'Check if GuardDuty findings are available in Security Hub data',
'Use Security Hub findings search instead'
],
'available_data_sources': list(tables.keys())
}
# Continue with actual search using discovered table...
```
### 5. **Universal Security Lake Query Interface**
Create a unified interface that works with any available data source:
```python
def universal_security_search(
query_type: str, # 'findings', 'network', 'api_calls', etc.
filters: Dict[str, Any],
data_sources: List[str] = None # Auto-detect if None
) -> Dict[str, Any]:
"""
Universal search interface that adapts to available data sources
"""
available_tables = discover_security_lake_tables(DATABASE_NAME)
if data_sources is None:
# Auto-select relevant data sources based on query type
data_sources = auto_select_data_sources(query_type, available_tables)
results = []
for source in data_sources:
if available_tables.get(source):
table_name = available_tables[source][0] # Use first available table
source_results = query_data_source(table_name, query_type, filters)
results.extend(source_results)
return {
'success': True,
'results': results,
'data_sources_used': data_sources,
'total_results': len(results)
}
```
## Implementation Priority
### High Priority (Critical Issues)
1. **Dynamic table discovery** - Replace all hardcoded table names
2. **OCSF 2.0 support** - Handle the newer schema format
3. **Data source availability checks** - Prevent queries to empty/missing tables
### Medium Priority (Usability)
1. **Enhanced error messages** - Provide actionable feedback
2. **Auto-fallback logic** - Use Security Hub for GuardDuty data if GuardDuty tables missing
3. **Query optimization** - Handle Iceberg table format efficiently
### Low Priority (Nice to Have)
1. **Multiple region support** - Currently hardcoded to us-east-1
2. **Custom data source support** - Handle non-AWS data sources
3. **Query result caching** - Improve performance for repeated queries
## Test Cases for Validation
Create test scenarios covering:
- OCSF 1.0 vs 2.0 environments
- Different data source combinations
- Empty/missing data sources
- Multiple regions
- Various query types (IP search, findings, etc.)
## Expected Outcomes
After implementing these improvements:
- ✅ Tools work with any Security Lake configuration
- ✅ Graceful handling of missing data sources
- ✅ Support for both OCSF 1.0 and 2.0
- ✅ Better error messages and user guidance
- ✅ Dynamic adaptation to available data
## Current Working Example
The Security Hub findings can be successfully queried using this approach:
```sql
SELECT severity, finding_info.title, finding_info.desc, resource.type, compliance.control
FROM "amazon_security_lake_glue_db_us_east_1"."amazon_security_lake_table_us_east_1_sh_findings_2_0"
WHERE severity IS NOT NULL
ORDER BY CASE severity WHEN 'Critical' THEN 1 WHEN 'High' THEN 2 ELSE 3 END
```
This demonstrates the tools can work when properly adapted to the actual table structure.