Skip to main content
Glama

Adobe Commerce Support MCP Server

This MCP server helps generate professional Adobe Commerce support responses from case findings.

Installation

  1. Dependencies are already installed

  2. Server is ready to use

Usage with Cursor

To use this MCP server with Cursor, add the following configuration to your Cursor settings:

Option 1: Add to Cursor Settings (Recommended)

  1. Open Cursor Settings (Cmd+,)

  2. Search for "MCP"

  3. Add this server configuration:

{ "mcpServers": { "adobe-support-mcp": { "command": "python3", "args": ["/Users/kavingas/VSCodeProjects/mcp_support_server/mcp_support_server.py"], "env": {} } } }

Option 2: Use the provided config file

The mcp_config.json file in this directory contains the ready-to-use configuration.

How to Use

Option 1: Structured Content (Traditional)

  1. Create a find.md file with properly structured content:

### Findings [Your investigation findings here] ### Analysis [Your technical analysis here] ### Recommendations [Your recommended solutions here]
  1. Use the generate_support_reply tool to create a professional customer response.

Option 2: Mixed Content (New - LLM Assisted)

  1. Create a find.md file with mixed/unstructured content (any format)

  2. Use either:

    • categorize_mixed_content tool first, then use LLM to process the categorization prompt

    • generate_support_reply with auto_categorize=true (default) for automatic handling

The server will automatically detect if your content needs categorization and provide LLM prompts to organize it properly.

Tools Available

  • generate_support_reply: Generates a professional Adobe Commerce support response from case findings

    • find_file: Input file (default: "find.md")

    • resp_file: Output file (default: "resp.md")

    • auto_categorize: Automatically handle mixed content (default: true)

  • categorize_mixed_content: Creates LLM prompts to categorize mixed content into structured format

    • find_file: Input file with mixed content (default: "find.md")

    • categorized_file: Output file with categorization prompt (default: "categorized.md")

Files

  • mcp_support_server.py - Main MCP server

  • requirements.txt - Python dependencies

  • mcp_config.json - Cursor configuration

  • setup.py - Installation script

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kavingas/mcp_support_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server