Skip to main content
Glama

remove_columns

Remove specified columns from a dataframe to clean data, reduce clutter, or prepare datasets for analysis by eliminating unnecessary fields.

Instructions

Remove columns from the dataframe.

Returns: ColumnOperationResult with removal details

Examples: # Remove single column remove_columns(ctx, ["temp_column"])

# Remove multiple columns remove_columns(ctx, ["col1", "col2", "col3"]) # Clean up after analysis remove_columns(ctx, ["_temp", "_backup", "old_value"])

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
columnsYesList of column names to remove from the dataframe

Implementation Reference

  • The core handler function implementing the remove_columns tool. Validates column existence, drops the specified columns from the session's dataframe, and returns a ColumnOperationResult with operation details.
    async def remove_columns( ctx: Annotated[Context, Field(description="FastMCP context for session access")], columns: Annotated[ list[str], Field(description="List of column names to remove from the dataframe"), ], ) -> ColumnOperationResult: """Remove columns from the dataframe. Returns: ColumnOperationResult with removal details Examples: # Remove single column remove_columns(ctx, ["temp_column"]) # Remove multiple columns remove_columns(ctx, ["col1", "col2", "col3"]) # Clean up after analysis remove_columns(ctx, ["_temp", "_backup", "old_value"]) """ # Get session_id from FastMCP context session_id = ctx.session_id session, df = get_session_data(session_id) # Validate columns exist missing_cols = [col for col in columns if col not in df.columns] if missing_cols: raise ColumnNotFoundError(str(missing_cols[0]), df.columns.tolist()) session.df = df.drop(columns=columns) # No longer recording operations (simplified MCP architecture) return ColumnOperationResult( operation="remove", rows_affected=len(df), columns_affected=columns, )
  • Registers the remove_columns handler as an MCP tool on the column_server FastMCP instance, specifying the tool name.
    column_server.tool(name="remove_columns")(remove_columns)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jonpspri/databeak'

If you have feedback or need assistance with the MCP directory API, please join our Discord server