Skip to main content
Glama

fill_column_nulls

Replace missing values in a specified column with a chosen replacement value to handle incomplete data in datasets.

Instructions

Fill null/NaN values in a specific column with a specified value.

Returns: ColumnOperationResult with fill details

Examples: # Fill missing names with "Unknown" fill_column_nulls(ctx, "name", "Unknown")

# Fill missing ages with 0 fill_column_nulls(ctx, "age", 0) # Fill missing status with default fill_column_nulls(ctx, "status", "pending") # Fill missing scores with -1 fill_column_nulls(ctx, "score", -1)

Input Schema

NameRequiredDescriptionDefault
columnYesColumn name to fill null values in
valueYesValue to use for filling null/NaN values

Input Schema (JSON Schema)

{ "properties": { "column": { "description": "Column name to fill null values in", "type": "string" }, "value": { "description": "Value to use for filling null/NaN values", "title": "Value" } }, "required": [ "column", "value" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jonpspri/databeak'

If you have feedback or need assistance with the MCP directory API, please join our Discord server