Skip to main content
Glama

MCP Code Analysis Server

MIT License
5
settings.toml3.37 kB
[default] # Repositories to track (for MCP server) repositories = [ {url = "https://github.com/johannhartmann/mcpcodeanalysis", branch = "main"} ] [default.scanner] # Paths to scan for code files root_paths = ["."] # Patterns to exclude from scanning exclude_patterns = [ "__pycache__", "*.pyc", ".git", ".venv", "venv", "env", ".env", "node_modules", ".pytest_cache", ".mypy_cache", ".ruff_cache", "*.egg-info", "dist", "build", "htmlcov", ".coverage" ] # File size limits max_file_size_mb = 10 # Git integration use_git = true git_branch = "main" [default.parser] # Languages to parse (currently only Python) languages = ["python"] # Chunk size for large files (in lines) chunk_size = 100 # Maximum depth for nested structures max_depth = 10 # Extract docstrings extract_docstrings = true # Extract type hints extract_type_hints = true [default.embeddings] # OpenAI model for embeddings model = "text-embedding-ada-002" # Batch size for embedding generation batch_size = 100 # Maximum tokens per chunk max_tokens = 8000 # Cache embeddings locally use_cache = true cache_dir = ".embeddings_cache" # Generate both raw and interpreted embeddings generate_interpreted = true [default.database] # PostgreSQL connection settings host = "postgres" port = 5432 database = "code_analysis" user = "codeanalyzer" password = "developmentpass" # Connection pool settings pool_size = 10 max_overflow = 20 # pgvector settings vector_dimension = 1536 index_lists = 100 # ivfflat index parameter [default.mcp] # Server settings host = "0.0.0.0" port = 8080 # CORS settings allow_origins = ["*"] # Rate limiting rate_limit_enabled = false rate_limit_per_minute = 60 # Request timeout (seconds) request_timeout = 30 [default.query] # Default search limit default_limit = 10 max_limit = 100 # Similarity threshold (0-1) similarity_threshold = 0.7 # Include file context in results include_context = true context_lines = 3 # Ranking weights [default.query.ranking_weights] semantic_similarity = 0.6 keyword_match = 0.2 recency = 0.1 popularity = 0.1 [default.indexing] # Incremental indexing interval (seconds) update_interval = 300 # 5 minutes # Parallel processing parallel_workers = 4 # Memory limits max_memory_mb = 2048 # Progress reporting report_progress = true progress_interval = 100 # files [default.logging] # Log level (DEBUG, INFO, WARNING, ERROR) level = "INFO" # Log format (json, text) format = "json" # Log file settings file_enabled = true file_path = "logs/mcp-server.log" file_rotation = "daily" file_retention_days = 7 # Console logging console_enabled = true console_colorized = true [default.monitoring] # Metrics collection metrics_enabled = false metrics_port = 9090 # Health check endpoint health_check_enabled = true health_check_path = "/health" # Performance profiling profiling_enabled = false profiling_path = "profiles/" [production] # Production overrides [production.database] password = "@format {env[POSTGRES_PASSWORD]}" [production.logging] level = "WARNING" console_colorized = false [production.monitoring] metrics_enabled = true [development] # Development overrides [development.logging] level = "DEBUG" format = "text" [testing] # Testing overrides [testing.database] host = "localhost" database = "test_code_analysis" [testing.logging] file_enabled = false console_enabled = false

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/johannhartmann/mcpcodeanalysis'

If you have feedback or need assistance with the MCP directory API, please join our Discord server