Skip to main content
Glama

tos_video_snapshot

Extract frames from videos stored in TOS at specific timestamps and save them as images in designated buckets for analysis or processing.

Instructions

视频截帧(支持持久化)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
bucket_nameYes存储桶名称
formatNo输出格式jpg
object_keyYes视频对象键名
save_bucketYes保存截帧图片的存储桶名称
save_keyYes保存截帧图片的对象键名
timeNo截帧时间点(毫秒),如300表示第300毫秒

Implementation Reference

  • The core handler function `video_snapshot` that implements the `tos_video_snapshot` tool logic. It constructs a video processing parameter, performs the snapshot using TOS SDK's get_object with process and save parameters, waits for completion, generates a presigned URL for the resulting image, and returns the result.
    async def video_snapshot(args: Dict[str, Any]) -> List[TextContent]: """视频截帧(支持持久化)""" bucket_name = args["bucket_name"] object_key = args["object_key"] time = args.get("time", 300) format = args.get("format", "jpg") save_bucket = args["save_bucket"] save_key = args["save_key"] try: # 构建视频截帧处理参数,时间单位为毫秒 process = f"video/snapshot,t_{int(time)},f_{format}" # 使用官方SDK写法,通过save_bucket和save_object参数执行视频截帧和持久化 resp = tos_client.get_object( bucket=bucket_name, key=object_key, process=process, save_bucket=base64.b64encode(save_bucket.encode("utf-8")).decode("utf-8"), save_object=base64.b64encode(save_key.encode("utf-8")).decode("utf-8") ) # 读取处理结果以确保截帧完成 processed_data = resp.read() # 等待一下确保回写完成 import time as time_module time_module.sleep(1.0) # 生成截帧图片的预签名 URL download_url = tos_client.pre_signed_url(tos.HttpMethodType.Http_Method_Get, save_bucket, save_key, 3600) result = { "presigned_url": download_url.signed_url, "source_bucket": bucket_name, "source_key": object_key, "save_bucket": save_bucket, "save_key": save_key, "time": time, "format": format, "processed_size": len(processed_data), "expires_in": 3600, "status": "processed" } return [TextContent(type="text", text=json.dumps(result, indent=2, ensure_ascii=False))] except Exception as e: return [TextContent(type="text", text=f"视频截帧失败: {str(e)}")]
  • The input schema definition for the `tos_video_snapshot` tool, registered in the `list_tools()` handler. Defines parameters like bucket_name, object_key, time, format, save_bucket, save_key.
    Tool( name="tos_video_snapshot", description="视频截帧(支持持久化)", inputSchema={ "type": "object", "properties": { "bucket_name": { "type": "string", "description": "存储桶名称" }, "object_key": { "type": "string", "description": "视频对象键名" }, "time": { "type": "number", "description": "截帧时间点(毫秒),如300表示第300毫秒", "default": 300 }, "format": { "type": "string", "description": "输出格式", "enum": ["jpg", "png"], "default": "jpg" }, "save_bucket": { "type": "string", "description": "保存截帧图片的存储桶名称" }, "save_key": { "type": "string", "description": "保存截帧图片的对象键名" } }, "required": ["bucket_name", "object_key", "save_bucket", "save_key"] } ),
  • Tool dispatch/registration in the `call_tool()` function, which routes calls to `tos_video_snapshot` to the `video_snapshot` handler.
    elif name == "tos_video_snapshot": return await video_snapshot(arguments)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jneless/tos-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server