Skip to main content
Glama

tos_video_info

Retrieve video metadata and details from TOS object storage by specifying bucket name and object key for media processing workflows.

Instructions

获取视频信息

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
bucket_nameYes存储桶名称
object_keyYes视频对象键名

Implementation Reference

  • The core handler function implementing tos_video_info tool logic. Uses TOS SDK to fetch video information via process='video/info', parses JSON response, handles errors, and returns formatted metadata.
    async def video_info(args: Dict[str, Any]) -> List[TextContent]: """获取视频信息""" bucket_name = args["bucket_name"] object_key = args["object_key"] try: # 使用 get_object 方法通过 style 参数获取视频信息 # 设置处理参数为 video/info resp = tos_client.get_object(bucket_name, object_key, process="video/info") video_info_data = resp.read().decode('utf-8') # 尝试解析JSON响应 try: video_info_json = json.loads(video_info_data) result = { "bucket": bucket_name, "key": object_key, "video_info": video_info_json, "status": "success" } except json.JSONDecodeError: # 如果不是JSON格式,直接返回原始数据 result = { "bucket": bucket_name, "key": object_key, "video_info": video_info_data, "status": "success", "note": "返回原始格式数据" } return [TextContent(type="text", text=json.dumps(result, indent=2, ensure_ascii=False))] except Exception as e: return [TextContent(type="text", text=f"获取视频信息失败: {str(e)}")]
  • Input schema validation for tos_video_info tool, defining properties and requirements for bucket_name and object_key parameters.
    inputSchema={ "type": "object", "properties": { "bucket_name": { "type": "string", "description": "存储桶名称" }, "object_key": { "type": "string", "description": "视频对象键名" } }, "required": ["bucket_name", "object_key"] }
  • Registers the tos_video_info tool in the MCP server's list_tools() by defining its Tool object with name, description, and schema.
    Tool( name="tos_video_info", description="获取视频信息", inputSchema={ "type": "object", "properties": { "bucket_name": { "type": "string", "description": "存储桶名称" }, "object_key": { "type": "string", "description": "视频对象键名" } }, "required": ["bucket_name", "object_key"] } )
  • Tool dispatching logic in call_tool() that routes tos_video_info calls to the video_info handler function.
    elif name == "tos_video_info": return await video_info(arguments)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jneless/tos-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server