Skip to main content
Glama

๐Ÿงช gNMIBuddy

An over-engineered and opinionated tool that retrieves essential network information from devices using gNMI and OpenConfig models. Designed primarily for LLMs with Model Context Protocol (MCP) integration, it also provides a full CLI for direct use.

Opinionated by design, over-engineered by passion. gNMI and YANG expose overwhelming amounts of data with countless parameters. This tool provides what I consider the most relevant information for LLMs. And who doesn't enjoy building complicated solutions.

๐ŸŽฏ What It Does

Retrieve structured network data in JSON format:

  • ๐Ÿ”„ Routing: BGP, ISIS protocols and neighbor states

  • ๐Ÿ”Œ Interfaces: Status, configuration, and statistics

  • ๐Ÿท๏ธ MPLS: Labels, forwarding tables, and segment routing

  • ๐Ÿ”’ VPN/VRF: L3VPN configuration and route targets

  • ๐Ÿ“ Logs: Filtered device logs with keyword search

  • ๐Ÿ  Topology: Device neighbors and network-wide topology analysis

See the API definition for all available APIs and options.

โšก Prerequisites

  • Python 3.13+

  • uv, see the docs to install it.

    • brew is recommended for macOS users

  • Network devices with gNMI enabled.

Windows users: The repo require a Unix-like environment. Use WSL.

Device Compatibility

Tested on:

  • Cisco XRd Control Plane (24.4.1.26I, 25.3.1)

NOTE

Theget_logs() function only works on IOS-XR.

Devices must support gNMI and OpenConfig models listed below:

OpenConfig Models dependencies

  • openconfig-system >= 0.17.1

  • openconfig-interfaces >= 3.0.0

  • openconfig-network-instance >= 1.3.0

NOTE

If the required model for a function is not found, gNMIBuddy will return an error. If the model version is older than required, it will continue execution but warn the user about potential errors.

You can use the capabilities command to verify the supported models on a specific device. If you have many devices you can use the --device option.

uvx --from git+https://github.com/jillesca/gNMIBuddy.git \ gnmibuddy device capabilities --all-devices

Device Inventory file

gNMIBuddy identifies devices by hostname and looks up their corresponding IP addresses and credentials from the inventory file.

CAUTION

Without a device inventory file, gNMIBuddy cannot operate.

Provide device inventory via --inventory PATH or set NETWORK_INVENTORY env var.

TIP

Store environment variables in a.env file.

The inventory must be a JSON list of Device objects with these required fields:

  • name: Device hostname

  • ip_address: IP for gNMI connections

  • nos: Network OS identifier

    • iosxr only for now, use it even if you have other NOS. More will be added later.

Authentication (choose one method):

  • Username/Password: Requires both username and password fields

  • Certificate-based: Requires both path_cert and path_key fields

Schema: src/schemas/models.py | Example: xrd_sandbox.json

[ { "name": "xrd-1", "ip_address": "10.10.20.101", "nos": "iosxr", "username": "cisco", "password": "C1sco12345" }, { "name": "xrd-2", "ip_address": "10.10.20.102", "nos": "iosxr", "path_cert": "/opt/certs/device.pem", "path_key": "/opt/certs/device.key" } ]
TIP

Validate your inventory: Usegnmibuddy inventory validate to check your inventory file for proper format, valid IP addresses, required fields, and authentication configuration before running network commands.

๐Ÿš€ Quick Start

๐ŸŽฏ Instant Testing with MCP Inspector

Fastest way to try gNMIBuddy:

# Replace `xrd_sandbox.json` with your actual inventory file echo '#!/usr/bin/env bash' > /tmp/gnmibuddy-mcp-wrapper \ && echo 'exec uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy-mcp "$@"' >> /tmp/gnmibuddy-mcp-wrapper \ && chmod +x /tmp/gnmibuddy-mcp-wrapper \ && NETWORK_INVENTORY=xrd_sandbox.json npx @modelcontextprotocol/inspector /tmp/gnmibuddy-mcp-wrapper
TIP

No repo cloning, no MCP client setup required! If you don't have XRd, seeTesting with DevNet Sandbox.

Recommended: No installation required - runs directly from GitHub using uvx:

MCP Client

Configuration

VSCode

๐Ÿ“‹ Copy config

Standard MCP Clients

๐Ÿ“‹ Copy config

For Development - when you need to test local changes:

MCP Client

Configuration

VSCode

๐Ÿ“‹ Copy config

Standard MCP Clients

๐Ÿ“‹ Copy config

The "Standard MCP Clients" config works with any MCP client following the MCP specification (Cursor, Claude Desktop, etc.). VSCode uses a different format.

Setup:

  • uvx configs: Update the NETWORK_INVENTORY path to your inventory file

  • dev configs: Update the NETWORK_INVENTORY path and cwd to your local project directory

For CLI users who want to use gNMIBuddy as a command-line tool:

One-time execution

# Run directly without installation uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy --help # Example with commands uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy --inventory your_inventory.json device list

Install as a persistent tool

# Install the tool globally uv tool install git+https://github.com/jillesca/gNMIBuddy.git # Use it directly gnmibuddy --help gnmibuddy device info --device R1 # Uninstall when no longer needed uv tool uninstall gnmibuddy # To get updates uv tool upgrade gnmibuddy

The uvx method automatically builds and runs the tool in an isolated environment without affecting your system.

๐Ÿ“– CLI Reference

# Clone and setup (one-time only) git clone https://github.com/jillesca/gNMIBuddy.git && cd gNMIBuddy # Install dependencies uv sync --frozen --no-dev
โฏ uv run gnmibuddy.py --help โ–—โ–„โ–„โ––โ–—โ–– โ–—โ––โ–—โ–– โ–—โ––โ–—โ–„โ–„โ–„โ––โ–—โ–„โ–„โ–– โ–—โ–– โ–—โ––โ–—โ–„โ–„โ–„ โ–—โ–„โ–„โ–„โ–—โ–– โ–—โ–– โ–โ–Œ โ–โ–›โ–šโ––โ–โ–Œโ–โ–›โ–šโ–žโ–œโ–Œ โ–ˆ โ–โ–Œ โ–โ–Œโ–โ–Œ โ–โ–Œโ–โ–Œ โ–ˆโ–โ–Œ โ–ˆโ–โ–šโ–žโ–˜ โ–โ–Œโ–โ–œโ–Œโ–โ–Œ โ–โ–œโ–Œโ–โ–Œ โ–โ–Œ โ–ˆ โ–โ–›โ–€โ–šโ––โ–โ–Œ โ–โ–Œโ–โ–Œ โ–ˆโ–โ–Œ โ–ˆ โ–โ–Œ โ–โ–šโ–„โ–žโ–˜โ–โ–Œ โ–โ–Œโ–โ–Œ โ–โ–Œโ–—โ–„โ–ˆโ–„โ––โ–โ–™โ–„โ–žโ–˜โ–โ–šโ–„โ–žโ–˜โ–โ–™โ–„โ–„โ–€โ–โ–™โ–„โ–„โ–€ โ–โ–Œ An opinionated tool that retrieves essential network information from devices using gNMI and OpenConfig models. Designed primarily for LLMs with Model Context Protocol (MCP) integration, it also provides a full CLI. Help: https://github.com/jillesca/gNMIBuddy Python Version: 3.13.4 gNMIBuddy Version: 0.1.0 Usage: gnmibuddy.py [OPTIONS] COMMAND [ARGS]... ๐Ÿ“‹ Inventory Requirement: Provide device inventory via --inventory PATH, set NETWORK_INVENTORY env var, or use .env file (configurable with --env-file PATH) Options: -h, --help Show this message and exit -V, --version Show version information --log-level LEVEL Set logging level (debug, info, warning, error) --module-log-help Show detailed module logging help --all-devices Run on all devices concurrently --inventory PATH Path to inventory JSON file -e, --env-file PATH Path to .env file for configuration (default: .env in project root) --max-workers NUMBER Maximum number of concurrent workers for batch operations (--all-devices, --devices, --device-file) Commands: device (d) Device Information capabilities Get gNMI capabilities from a network device info Get system information from a network device list List all available devices in the inventory profile Get device profile and role information network (n) Network Protocols interface Get interface status and configuration mpls Get MPLS forwarding and label information routing Get routing protocol information (BGP, ISIS, OSPF) vpn Get VPN/VRF configuration and status topology (t) Network Topology neighbors Get direct neighbor information via LLDP/CDP adjacency Get network-wide IP adjacency analysis for complete topology network Get complete network topology information. Queries all devices in inventory. ops (o) Operations logs Retrieve and filter device logs validate Validate all collector functions (development tool) inventory (i) Inventory Management validate Validate inventory file format and schema Examples: gnmibuddy.py device info --device R1 gnmibuddy.py network routing --device R1 gnmibuddy.py --all-devices device list gnmibuddy.py inventory validate --inventory inventory.json gnmibuddy.py --env-file production.env device list gnmibuddy.py --env-file dev.env --log-level debug device info --device R1 Run 'gnmibuddy.py COMMAND --help' for more information on a command.

๐Ÿค– Development

Quick Testing with MCP Inspector

Recommended: Use uvx (no repository clone needed):

# Replace `xrd_sandbox.json` with your actual inventory file echo '#!/usr/bin/env bash' > /tmp/gnmibuddy-mcp-wrapper \ && echo 'exec uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy-mcp "$@"' >> /tmp/gnmibuddy-mcp-wrapper \ && chmod +x /tmp/gnmibuddy-mcp-wrapper \ && NETWORK_INVENTORY=xrd_sandbox.json npx @modelcontextprotocol/inspector /tmp/gnmibuddy-mcp-wrapper EOF

For local development (testing uncommitted changes):

# Run from your gNMIBuddy project directory (where pyproject.toml is located) cd /path/to/your/gNMIBuddy && \ NETWORK_INVENTORY=your_inventory.json \ npx @modelcontextprotocol/inspector \ uv run --frozen gnmibuddy-mcp

MCP Client Configuration

Choose the approach that fits your needs:

Use Case

VSCode

Standard MCP Clients

Production/Testing

๐Ÿ“‹ Copy config

๐Ÿ“‹ Copy config

Local Development

๐Ÿ“‹ Copy config

๐Ÿ“‹ Copy config

Standard MCP Clients config works with Cursor, Claude Desktop, and any other client following the MCP specification. VSCode requires a specific format.

Configuration requirements:

  • uvx configs: Only update NETWORK_INVENTORY path to your inventory file

  • dev configs: Update both NETWORK_INVENTORY path and cwd to your local project directory

๐Ÿงช Testing with DevNet Sandbox

Don't have network devices? Use the DevNet XRd Sandbox, follow the instructions to bring up a MPLS network with docker, then configure gNMI with the included Ansible playbook:

# If you cloned the repo # Enable gRPC on the DevNet XRd Sandbox ANSIBLE_HOST_KEY_CHECKING=False \ uvx --from "ansible-core==2.19.2" --with "paramiko,ansible" \ ansible-playbook ansible-helper/xrd_apply_config.yaml -i ansible-helper/hosts
# Self-contained command that downloads files automatically ANSIBLE_HOST_KEY_CHECKING=False \ bash -c 'TMPDIR=$(mktemp -d) \ && trap "rm -rf $TMPDIR" EXIT \ && curl -s https://raw.githubusercontent.com/jillesca/gNMIBuddy/refs/heads/main/ansible-helper/xrd_apply_config.yaml > "$TMPDIR/playbook.yaml" \ && curl -s https://raw.githubusercontent.com/jillesca/gNMIBuddy/refs/heads/main/ansible-helper/hosts > "$TMPDIR/hosts" \ && uvx --from "ansible-core==2.19.2" --with "paramiko,ansible" ansible-playbook "$TMPDIR/playbook.yaml" -i "$TMPDIR/hosts"'

Test with the xrd_sandbox.json inventory file part of the repository.

Enable manually gNMI. Apply this configuration to all XRd devices:

grpc port 57777 no-tls

Don't forget to commit your changes to XRd.

Testing with AI Agents

Want to see how this MCP tool integrates with actual AI agents? Check out sp_oncall - a graph of agents that use gNMIBuddy to demonstrate real-world network operations scenarios.

๐Ÿ“‹ Response Format

gNMIBuddy provides structured, consistent responses for all network operations. The response format depends on whether you're targeting a single device or multiple devices.

Single Device Operations

Single device operations return a NetworkOperationResult object with detailed information about the operation, including status, data, metadata, and error handling.

@dataclass class NetworkOperationResult: device_name: str ip_address: IPAddress nos: NetworkOS operation_type: str status: OperationStatus data: Dict[str, Any] = field(default_factory=dict) metadata: Dict[str, Any] = field(default_factory=dict) error_response: Optional[ErrorResponse] = None feature_not_found_response: Optional[FeatureNotFoundResponse] = None

Batch Operations

Batch operations (using --all-devices, --devices, or --device-file) return a BatchOperationResult object containing:

  • results: A list of NetworkOperationResult objects, one for each device

  • summary: Aggregate statistics about the batch operation

  • metadata: Additional batch operation metadata

@dataclass class BatchOperationResult: results: List[NetworkOperationResult] # One result per device summary: BatchOperationSummary metadata: Dict[str, Any] = field(default_factory=dict)

For more details, see the response schema definition.

๐Ÿ—๏ธ Architecture

Schema Organization

gNMIBuddy uses a centralized schema approach for data contracts:

  • src/schemas/: Contains all shared data models and response contracts.

  • src/collectors/: Network telemetry data collectors following OpenTelemetry patterns.

  • src/processors/: Data transformation processors following OpenTelemetry patterns.

These schemas serve as contracts between different parts of the system, ensuring consistency across:

  • CLI and API interfaces.

  • Network operation responses.

  • Error handling and status reporting.

  • MCP tool integration.

Data Processing Pipeline

The application follows an OpenTelemetry-inspired architecture:

Raw gNMI Data โ†’ Collector โ†’ Processor โ†’ Schema โ†’ Response
  1. Collectors gather data from network devices via gNMI.

  2. Processors transform raw data into structured, LLM-friendly formats.

  3. Schemas ensure consistent data contracts across the system.

  4. Responses provide standardized output for CLI, API, and MCP interfaces.

โš™๏ธ Environment Variables

gNMIBuddy supports environment variables for configuration, which work for both CLI and MCP server usage. Environment variables can be loaded from:

  1. Command line arguments (highest priority)

  2. Operating system environment variables

  3. .env (default: .env in project root)

  4. Default values (lowest priority)

.env File Support

gNMIBuddy automatically loads environment variables from a .env file in the project root. You can specify a custom .env file using the --env-file option:

# Use default .env file gnmibuddy device list # Use custom environment file gnmibuddy --env-file production.env device list

Example:

# .env file # Network configuration NETWORK_INVENTORY=/path/to/inventory.json # Logging configuration GNMIBUDDY_LOG_LEVEL=debug GNMIBUDDY_MODULE_LEVELS=src.cmd=warning,src.inventory=debug GNMIBUDDY_STRUCTURED_LOGGING=true GNMIBUDDY_LOG_FILE=/custom/log/path.log GNMIBUDDY_EXTERNAL_SUPPRESSION_MODE=development # MCP debugging GNMIBUDDY_MCP_TOOL_DEBUG=true

Global Configuration

Variable

Description

Values

Default

NETWORK_INVENTORY

Device inventory file path

File path

-

GNMIBUDDY_LOG_LEVEL

Global log level

debug, info, warning, error

info

GNMIBUDDY_MODULE_LEVELS

Module-specific log levels

module1=debug,module2=warning

-

GNMIBUDDY_LOG_FILE

Custom log file path (overrides sequential)

File path

logs/gnmibuddy_XXX.log

GNMIBUDDY_STRUCTURED_LOGGING

Enable JSON logging

true, false

false

GNMIBUDDY_EXTERNAL_SUPPRESSION_MODE

External library suppression

cli, mcp, development

cli

GNMIBUDDY_MCP_TOOL_DEBUG

Enable MCP tool debugging

true, false

false

Sequential Log Files: gNMIBuddy automatically creates numbered log files (gnmibuddy_001.log, gnmibuddy_002.log, etc.) for each execution in the logs/ directory. The highest number is always the most recent run.

NOTE

Environment variables serve as defaults and can be overridden by CLI arguments like--log-level and --module-log-levels.

For detailed environment configuration options and advanced usage, see Environment Configuration Guide

For complete logging environment variable documentation, see Logging README

โš™๏ธ Batch Operations & Concurrency

gNMIBuddy supports running commands across multiple devices simultaneously with configurable concurrency controls to optimize performance while avoiding rate limiting.

Batch Operation Options

Device Selection:

  • --device DEVICE: Single device operation

  • --devices device1,device2,device3: Comma-separated device list

  • --device-file path/to/devices.txt: Device list from file (one per line)

  • --all-devices: Run on all devices in inventory

Concurrency Controls:

  • --max-workers N: Maximum concurrent devices to process (default: 5)

  • --per-device-workers N: Maximum concurrent operations per device (default: varies by command)

Understanding Concurrency Levels

gNMIBuddy operates with two levels of concurrency:

  1. Device-level concurrency (--max-workers): How many devices to process simultaneously

  2. Per-device concurrency (command-specific): How many operations to run simultaneously on each device

Total concurrent requests = max_workers ร— per_device_operations

Examples

# Process 3 devices, 2 operations per device = 6 total requests uv run gnmibuddy.py --max-workers 3 ops validate --devices xrd-1,xrd-2,xrd-3 --per-device-workers 2
-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jillesca/gNMIBuddy'

If you have feedback or need assistance with the MCP directory API, please join our Discord server