Skip to main content
Glama

Codebuddy MCP Server

A lightweight Cognitive Scaffolding Platform that provides advanced task decomposition, metacognitive guidance, and intelligent memory for AI agents.

Built on PhD-level research in cognitive load theory, hierarchical task networks, and prompt engineering best practices.

🧠 Cognitive Features

  • Smart Task Planning: Hierarchical decomposition respecting Miller's 7±2 rule

  • Metacognitive Guidance: Self-reflection prompts and adaptive strategies

  • Complexity Assessment: Automatic cognitive load evaluation and management

  • Pattern Recognition: Learning from successful project structures

  • Software Engineering Integration: Clean Code and SOLID principle guidance

  • Tool Usage Nudges: Smart suggestions for AI agents to use complementary tools

🚀 Core Capabilities

  • Hierarchical Planning: Break complex problems using proven cognitive frameworks

  • Progress Tracking: Update status with learning capture and insight generation

  • Persistent Memory: Append-only JSONL storage with cognitive metadata

  • Intelligent Search: Context-aware task discovery with success pattern matching

  • Strategic Learning: Extract actionable insights from completed projects

Quick Start

Local Development

pip install -r requirements.txt python codebuddy.py --host 0.0.0.0 --port 8000

Docker

docker build -t codebuddy-mcp . docker run -p 8000:8000 -v $(pwd)/data:/app/data codebuddy-mcp

Docker Compose

docker-compose up -d

MCP Tools

  • plan_task(problem: str) - Create a new task with generated steps

  • update_task(task_id: str, status: str, notes: str) - Update task progress

  • list_tasks(limit: int = 10) - Get recent tasks

  • search_tasks(query: str) - Find tasks by keyword

  • summarize_lessons() - Analyze success patterns and blockers

Configuration

The server accepts the following command-line arguments:

  • --host - Host address to bind to (default: localhost)

  • --port - Port number to bind to (default: 8000)

  • --data-file - Path to JSONL storage file (default: data/tasks.jsonl)

  • --log-level - Logging level (default: INFO)

Storage Format

Tasks are stored in data/tasks.jsonl with one JSON object per line:

{ "id": "uuid", "problem": "string", "steps": ["string"], "status": "planned|in_progress|completed|blocked", "notes": "string", "created_at": "iso8601", "updated_at": "iso8601" }

Architecture

The server follows Clean Code and SOLID principles:

  • models.py - Pydantic data models and validation

  • storage.py - JSONL persistence with cross-platform file locking

  • tools.py - MCP tool implementations and business logic

  • error_handling.py - Structured error handling and health monitoring

  • codebuddy.py - Main server application with FastMCP integration

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jacklatrobe/codebuddy-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server