Skip to main content
Glama

Codebuddy MCP Server

by jacklatrobe
README.md2.89 kB
# Codebuddy MCP Server A lightweight **Cognitive Scaffolding Platform** that provides advanced task decomposition, metacognitive guidance, and intelligent memory for AI agents. Built on PhD-level research in cognitive load theory, hierarchical task networks, and prompt engineering best practices. ## 🧠 Cognitive Features - **Smart Task Planning**: Hierarchical decomposition respecting Miller's 7±2 rule - **Metacognitive Guidance**: Self-reflection prompts and adaptive strategies - **Complexity Assessment**: Automatic cognitive load evaluation and management - **Pattern Recognition**: Learning from successful project structures - **Software Engineering Integration**: Clean Code and SOLID principle guidance - **Tool Usage Nudges**: Smart suggestions for AI agents to use complementary tools ## 🚀 Core Capabilities - **Hierarchical Planning**: Break complex problems using proven cognitive frameworks - **Progress Tracking**: Update status with learning capture and insight generation - **Persistent Memory**: Append-only JSONL storage with cognitive metadata - **Intelligent Search**: Context-aware task discovery with success pattern matching - **Strategic Learning**: Extract actionable insights from completed projects ## Quick Start ### Local Development ```bash pip install -r requirements.txt python codebuddy.py --host 0.0.0.0 --port 8000 ``` ### Docker ```bash docker build -t codebuddy-mcp . docker run -p 8000:8000 -v $(pwd)/data:/app/data codebuddy-mcp ``` ### Docker Compose ```bash docker-compose up -d ``` ## MCP Tools - `plan_task(problem: str)` - Create a new task with generated steps - `update_task(task_id: str, status: str, notes: str)` - Update task progress - `list_tasks(limit: int = 10)` - Get recent tasks - `search_tasks(query: str)` - Find tasks by keyword - `summarize_lessons()` - Analyze success patterns and blockers ## Configuration The server accepts the following command-line arguments: - `--host` - Host address to bind to (default: localhost) - `--port` - Port number to bind to (default: 8000) - `--data-file` - Path to JSONL storage file (default: data/tasks.jsonl) - `--log-level` - Logging level (default: INFO) ## Storage Format Tasks are stored in `data/tasks.jsonl` with one JSON object per line: ```json { "id": "uuid", "problem": "string", "steps": ["string"], "status": "planned|in_progress|completed|blocked", "notes": "string", "created_at": "iso8601", "updated_at": "iso8601" } ``` ## Architecture The server follows Clean Code and SOLID principles: - **models.py** - Pydantic data models and validation - **storage.py** - JSONL persistence with cross-platform file locking - **tools.py** - MCP tool implementations and business logic - **error_handling.py** - Structured error handling and health monitoring - **codebuddy.py** - Main server application with FastMCP integration

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jacklatrobe/codebuddy-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server