# Deployment Guide
## Render Deployment
### Prerequisites
1. GitHub repository with the code
2. Render account
3. PostgreSQL database
### Steps
1. **Create PostgreSQL Database on Render**
- Go to Render Dashboard
- Create new PostgreSQL database
- Note the connection string
2. **Deploy the Application**
- Connect your GitHub repository to Render
- Use the provided `render.yaml` configuration
- Set environment variables:
- `DATABASE_URL`: Your PostgreSQL connection string
- Other variables are pre-configured
3. **Run Database Migrations**
```bash
# After deployment, run migrations via Render shell
python -m alembic upgrade head
```
### Environment Variables
Required:
- `DATABASE_URL`: PostgreSQL connection string
- `WANIKANI_API_BASE_URL`: https://api.wanikani.com/v2
Optional (with defaults):
- `DEBUG`: false
- `LOG_LEVEL`: INFO
- `SYNC_INTERVAL_MINUTES`: 30
- `MAX_CONCURRENT_SYNCS`: 3
- `WANIKANI_RATE_LIMIT`: 60
### Health Check
The application exposes a health check endpoint at `/health` for monitoring.
### Monitoring
- Use Render's built-in logging and metrics
- Application logs include sync status and error information
- Consider adding Sentry for error tracking (set `SENTRY_DSN`)
## Local Development with Podman
```bash
# Build the container
podman build -t wanikani-mcp .
# Run with environment file
podman run -p 8000:8000 --env-file .env wanikani-mcp
# Or run HTTP mode
podman run -p 8000:8000 -e DATABASE_URL="sqlite:///./wanikani_mcp.db" wanikani-mcp
```
## MCP Integration
Once deployed, users can connect via:
- HTTP mode: Use the deployed URL
- Stdio mode: Run locally with `task dev`
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/jackedney/wanikani-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server