Skip to main content
Glama

MCP Hybrid Forecasting

by j1c4b
debug_stocks.pyโ€ข2.37 kB
# debug_stocks.py - Debug stock data download issues import yfinance as yf import pandas as pd import warnings warnings.filterwarnings('ignore') def test_single_stock(ticker): """Test downloading data for a single stock.""" print(f"\n๐Ÿ” Testing {ticker}...") try: # Try to download data data = yf.download(ticker, period="1y", progress=False) if data.empty: print(f" โŒ No data returned for {ticker}") return False close = data['Close'].dropna() print(f" โœ… Downloaded {len(close)} data points") print(f" ๐Ÿ“Š Price range: ${float(close.min()):.2f} - ${float(close.max()):.2f}") print(f" ๐Ÿ“… Date range: {data.index[0].date()} to {data.index[-1].date()}") # Test volatility calculation returns = close.pct_change().dropna() daily_vol = float(returns.std()) print(f" ๐Ÿ“ˆ Daily volatility: {daily_vol:.1%}") return True except Exception as e: print(f" โŒ Error: {e}") return False def main(): """Test all stocks in lenny_golub portfolio.""" # Your portfolio stocks lenny_golub_stocks = ['COIN', 'GBTC', 'HOOD', 'MSTR', 'PYPL'] print("๐Ÿš€ DEBUGGING STOCK DATA DOWNLOAD") print("=" * 50) print(f"Testing {len(lenny_golub_stocks)} stocks from lenny_golub portfolio...") successful = [] failed = [] for ticker in lenny_golub_stocks: if test_single_stock(ticker): successful.append(ticker) else: failed.append(ticker) print(f"\n๐Ÿ“Š SUMMARY:") print(f" โœ… Successful: {len(successful)} stocks") if successful: print(f" {', '.join(successful)}") print(f" โŒ Failed: {len(failed)} stocks") if failed: print(f" {', '.join(failed)}") if failed: print(f"\n๐Ÿ’ก TROUBLESHOOTING:") print(f" โ€ข Check internet connection") print(f" โ€ข Try again in a few minutes (API rate limits)") print(f" โ€ข Verify ticker symbols are correct") # Test with a known working stock print(f"\n๐Ÿงช Testing with AAPL (known working stock)...") test_single_stock("AAPL") return successful, failed if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/j1c4b/mcp-hybrid-forecasting'

If you have feedback or need assistance with the MCP directory API, please join our Discord server