Skip to main content
Glama
recreate_image_table.py1.97 kB
#!/usr/bin/env python3 """ Recreate MedicalImageVectors table with correct VECTOR schema. """ import sys import os sys.path.insert(0, os.path.dirname(__file__)) from src.db.connection import get_connection def recreate_table(): """Drop and recreate MedicalImageVectors with proper VECTOR type.""" conn = get_connection() cursor = conn.cursor() print("Recreating MedicalImageVectors table with correct schema...\n") # Drop existing table try: print("→ Dropping existing table...") cursor.execute("DROP TABLE SQLUser.MedicalImageVectors") conn.commit() print("✓ Table dropped") except Exception as e: print(f"Note: {e}") conn.rollback() # Create table with correct VECTOR type print("\n→ Creating table with VECTOR(DOUBLE, 1024)...") cursor.execute(""" CREATE TABLE SQLUser.MedicalImageVectors ( ImageID VARCHAR(255) PRIMARY KEY, PatientID VARCHAR(255) NOT NULL, StudyType VARCHAR(255) NOT NULL, ImagePath VARCHAR(1000) NOT NULL, Embedding VECTOR(DOUBLE, 1024) NOT NULL, RelatedReportID VARCHAR(255), CreatedAt TIMESTAMP DEFAULT CURRENT_TIMESTAMP, UpdatedAt TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) conn.commit() print("✓ Table created with VECTOR(DOUBLE, 512)") # Create indexes print("\n→ Creating indexes...") try: cursor.execute("CREATE INDEX idx_image_patient ON SQLUser.MedicalImageVectors(PatientID)") cursor.execute("CREATE INDEX idx_study_type ON SQLUser.MedicalImageVectors(StudyType)") conn.commit() print("✓ Indexes created") except Exception as e: print(f"Note: {e}") cursor.close() conn.close() print("\n✅ Done! Table recreated successfully") print("\nNow run: python load_sample_images.py --limit 5") if __name__ == "__main__": recreate_table()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server