Skip to main content
Glama
load_test_image.py1.74 kB
#!/usr/bin/env python3 """Load a single test image into MedicalImageVectors""" import sys sys.path.insert(0, '.') from src.db.connection import get_connection from src.embeddings.nvclip_embeddings import NVCLIPEmbeddings print('=== Loading test image ===') # Initialize embedder try: embedder = NVCLIPEmbeddings() print('✓ NV-CLIP embedder initialized') except Exception as e: print(f'✗ NV-CLIP failed: {e}') print('Using mock embeddings') embedder = None # Generate embedding (for text query, not image) test_query = 'chest x-ray' if embedder: try: embedding = embedder.embed_text(test_query) print(f'✓ Generated {len(embedding)}-dim embedding') except Exception as e: print(f'✗ Embedding failed: {e}') embedding = [0.1] * 1024 else: embedding = [0.1] * 1024 # Insert into database conn = get_connection() cursor = conn.cursor() image_id = 'TEST001' patient_id = 'P10000000' study_type = 'Chest X-ray PA' image_path = 'test_dicom.png' embedding_str = '[' + ','.join(map(str, embedding)) + ']' try: cursor.execute(""" INSERT INTO SQLUser.MedicalImageVectors (ImageID, PatientID, StudyType, ImagePath, Embedding, CreatedAt, UpdatedAt) VALUES (?, ?, ?, ?, TO_VECTOR(?, DOUBLE), CURRENT_TIMESTAMP, CURRENT_TIMESTAMP) """, (image_id, patient_id, study_type, image_path, embedding_str)) conn.commit() print(f'✓ Inserted test image: {image_id}') except Exception as e: print(f'✗ Insert failed: {e}') conn.rollback() # Verify cursor.execute('SELECT COUNT(*) FROM SQLUser.MedicalImageVectors') count = cursor.fetchone()[0] print(f'\n✅ Total images in database: {count}') cursor.close() conn.close()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server