Skip to main content
Glama
performance_text.py1.72 kB
# performance_test.py import asyncio import time from client import MCPFileAnalyzerClient async def measure_tool_performance(): """Measure actual response times for each tool.""" client = MCPFileAnalyzerClient() if not await client.connect(): print("Failed to connect") return # Test each tool multiple times tools_to_test = [ ("list_data_files", {}), ("summarize_csv", {"file_name": "sample.csv"}), ("analyze_csv", {"file_name": "sample.csv", "operation": "describe"}), ("analyze_csv", {"file_name": "sample.csv", "operation": "head"}), ("comprehensive_analysis", {"file_name": "ecommerce_transactions.csv"}), ] results = {} for tool_name, args in tools_to_test: times = [] for i in range(5): # Run 5 times for average start = time.time() result = await client.call_tool(tool_name, args) end = time.time() times.append((end - start) * 1000) # Convert to milliseconds avg_time = sum(times) / len(times) min_time = min(times) max_time = max(times) results[tool_name] = { "average": avg_time, "min": min_time, "max": max_time, "times": times } print(f"{tool_name}: {avg_time:.2f}ms (min: {min_time:.2f}ms, max: {max_time:.2f}ms)") await client.disconnect() # Print summary print("\n=== Performance Summary ===") for tool, data in results.items(): print(f"{tool}: {data['average']:.2f}ms average") return results if __name__ == "__main__": asyncio.run(measure_tool_performance())

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/iramk11/claude-data-buddy'

If you have feedback or need assistance with the MCP directory API, please join our Discord server