Skip to main content
Glama
client_server_logs.txt3.27 kB
[11/30/25 01:22:47] INFO Processing request of type server.py:674 ListToolsRequest INFO Processing request of type server.py:674 CallToolRequest INFO Processing request of type server.py:674 CallToolRequest INFO Processing request of type server.py:674 CallToolRequest 📌 Tools available: - list_data_files: Return all data files available with metadata. - summarize_csv: Summarize CSV content (rows, columns, head preview). - summarize_parquet: Summarize Parquet file. - analyze_csv: Perform analysis: describe, head, info, columns. - comprehensive_analysis: Perform comprehensive multi-step analysis on a CSV file. Returns: summary, statistics, data types, null counts, and sample data. - compare_files: Compare two CSV files side by side. Returns: comparison of structure, columns, and basic statistics. - create_custom_dataset: Create a custom dataset with specified parameters. Args: rows: Number of rows to generate file_name: Output filename (must end with .csv or .parquet) columns: List of column names (optional) data_types: Dict mapping columns to types: 'int', 'float', 'str', 'date', 'bool' - create_sample: Generate synthetic dataset with enhanced information. 📌 Creating sample data: meta=None content=[TextContent(type='text', text='{\n "success": true,\n "message": "Sample CSV + Parquet created.",\n "created_files": [\n "sample.csv",\n "sample.parquet"\n ],\n "location": "/Users/iramkamdar/Downloads/Assignment5_Q4/file_analyzer-main/data_files"\n}', annotations=None, meta=None)] structuredContent=None isError=False 📌 Listing data files: meta=None content=[TextContent(type='text', text='{\n "total_files": 5,\n "csv_files": [\n "sample.csv",\n "ecommerce_transactions.csv",\n "test_data.csv"\n ],\n "parquet_files": [\n "ecommerce_transactions.parquet",\n "sample.parquet"\n ],\n "all_files": [\n "sample.csv",\n "ecommerce_transactions.parquet",\n "sample.parquet",\n "ecommerce_transactions.csv",\n "test_data.csv"\n ]\n}', annotations=None, meta=None)] structuredContent=None isError=False 📌 Summarizing sample.csv: meta=None content=[TextContent(type='text', text='{\n "file_name": "sample.csv",\n "rows": 5,\n "columns": [\n "id",\n "value",\n "category"\n ],\n "column_count": 3,\n "head": {\n "id": {\n "0": 1,\n "1": 2,\n "2": 3,\n "3": 4,\n "4": 5\n },\n "value": {\n "0": 10,\n "1": 20,\n "2": 30,\n "3": 25,\n "4": 40\n },\n "category": {\n "0": "A",\n "1": "B",\n "2": "A",\n "3": "C",\n "4": "B"\n }\n },\n "dtypes": {\n "id": "int64",\n "value": "int64",\n "category": "object"\n },\n "memory_usage_mb": 0.0\n}', annotations=None, meta=None)] structuredContent=None isError=False

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/iramk11/claude-data-buddy'

If you have feedback or need assistance with the MCP directory API, please join our Discord server