Skip to main content
Glama

MCP ECharts

scatter.spec.ts1.35 kB
import { describe, expect, it } from "vitest"; import { generateScatterChartTool } from "../../src/tools/scatter"; import "../utils/matcher"; describe("Scatter Chart Tool", () => { it("should generate a basic scatter chart", async () => { const result = await generateScatterChartTool.run({ title: "Height vs Weight Correlation", axisXTitle: "Height (cm)", axisYTitle: "Weight (kg)", data: [ { x: 160, y: 50 }, { x: 165, y: 55 }, { x: 170, y: 60 }, { x: 175, y: 65 }, { x: 180, y: 70 }, { x: 185, y: 75 }, { x: 190, y: 80 }, ], width: 800, height: 600, theme: "default", }); await expect(result).toImageEqual("scatter-basic"); }); it("should generate scatter chart with more data points", async () => { // Generate random scattered data const data = []; for (let i = 0; i < 50; i++) { data.push({ x: Math.random() * 100, y: Math.random() * 100 + Math.random() * 20 - 10, }); } const result = await generateScatterChartTool.run({ title: "Random Data Distribution", axisXTitle: "X Values", axisYTitle: "Y Values", data, width: 800, height: 600, theme: "default", }); await expect(result).toImageEqual("scatter-random"); }); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hustcc/mcp-echarts'

If you have feedback or need assistance with the MCP directory API, please join our Discord server