Skip to main content
Glama

MCP ECharts

boxplot.spec.ts1.2 kB
import { describe, expect, it } from "vitest"; import { generateBoxplotChartTool } from "../../src/tools/boxplot"; import "../utils/matcher"; describe("Boxplot Chart Tool", () => { it("should generate a basic boxplot chart", async () => { const result = await generateBoxplotChartTool.run({ title: "Test Score Distribution", axisXTitle: "Subject", axisYTitle: "Score", data: [ { category: "Math", value: 85 }, { category: "Math", value: 90 }, { category: "Math", value: 78 }, { category: "Math", value: 92 }, { category: "Math", value: 88 }, { category: "English", value: 75 }, { category: "English", value: 80 }, { category: "English", value: 85 }, { category: "English", value: 70 }, { category: "English", value: 82 }, { category: "Science", value: 88 }, { category: "Science", value: 92 }, { category: "Science", value: 85 }, { category: "Science", value: 90 }, { category: "Science", value: 87 }, ], width: 800, height: 600, theme: "default", }); await expect(result).toImageEqual("boxplot-basic"); }); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hustcc/mcp-echarts'

If you have feedback or need assistance with the MCP directory API, please join our Discord server