Skip to main content
Glama

Model Context Protocol (MCP) Server

by hideya
README.md9.36 kB
# Simple MCP Client to Explore MCP Servers [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://github.com/hideya/langchain-mcp-tools-py/blob/main/LICENSE) [![pypi version](https://img.shields.io/pypi/v/mcp-chat.svg)](https://pypi.org/project/mcp-chat/) **Quickly test and explore MCP servers from the command line!** A simple, text-based CLI client for [Model Context Protocol (MCP)](https://modelcontextprotocol.io/) servers built with LangChain and Python. Suitable for testing MCP servers, exploring their capabilities, and prototyping integrations. Internally it uses [LangChain ReAct Agent](https://langchain-ai.github.io/langgraph/reference/agents/) and a utility function `convert_mcp_to_langchain_tools()` from [`langchain_mcp_tools`](https://pypi.org/project/langchain-mcp-tools/). A TypeScript equivalent of this utility is available [here](https://www.npmjs.com/package/@h1deya/mcp-try-cli) ## Prerequisites - Python 3.11+ - [optional] [`uv` (`uvx`)](https://docs.astral.sh/uv/getting-started/installation/) installed to run Python package-based MCP servers - [optional] [npm 7+ (`npx`)](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) to run Node.js package-based MCP servers - LLM API key(s) from [OpenAI](https://platform.openai.com/api-keys), [Anthropic](https://console.anthropic.com/settings/keys), [Google AI Studio (for GenAI/Gemini)](https://aistudio.google.com/apikey), [xAI](https://console.x.ai/), [Cerebras](https://cloud.cerebras.ai), and/or [Groq](https://console.groq.com/keys), as needed ## Quick Start - Install `mcp-chat` tool. This can take up to a few minutes to complete: ```bash pip install mcp-chat ``` - Configure LLM and MCP Servers settings via the configuration file, `llm_mcp_config.json5` ```bash code llm_mcp_config.json5 ``` The following is a simple configuration for quick testing: ```json5 { "llm": { "provider": "openai", "model": "gpt-5-mini", // "provider": "anthropic", "model": "claude-3-5-haiku-latest", // "provider": "google_genai", "model": "gemini-2.5-flash", // "provider": "xai", "model": "grok-3-mini", // "provider": "cerebras", "model": "gpt-oss-120b", // "provider": "groq", "model": "openai/gpt-oss-20b", }, "mcp_servers": { "us-weather": { // US weather only "command": "npx", "args": ["-y", "@h1deya/mcp-server-weather"] }, }, "example_queries": [ "Tell me how LLMs work in a few sentences", "Are there any weather alerts in California?", ], } ``` - Set up API keys ```bash echo "ANTHROPIC_API_KEY=sk-ant-... OPENAI_API_KEY=sk-proj-... GOOGLE_API_KEY=AI... XAI_API_KEY=xai-... CEREBRAS_API_KEY=csk-... GROQ_API_KEY=gsk_..." > .env code .env ``` - Run the tool ```bash mcp-chat ``` By default, it reads the configuration file, `llm_mcp_config.json5`, from the current directory. Then, it applies the environment variables specified in the `.env` file, as well as the ones that are already defined. ## Features - **Easy setup**: Works out of the box with popular MCP servers - **Flexible configuration**: JSON5 config with environment variable support - **Multiple LLM/API providers**: OpenAI, Anthropic, Google (GenAI), xAI, Ceberas, Groq - **Command & URL servers**: Support for both local and remote MCP servers - **Local MCP Server logging**: Save stdio MCP server logs with customizable log directory - **Interactive testing**: Example queries for the convenience of repeated testing ## Limitations - **Tool Return Types**: Currently, only text results of tool calls are supported. It uses LangChain's `response_format: 'content'` (the default) internally, which only supports text strings. While MCP tools can return multiple content types (text, images, etc.), this library currently filters and uses only text content. - **MCP Features**: Only MCP [Tools](https://modelcontextprotocol.io/docs/concepts/tools) are supported. Other MCP features like Resources, Prompts, and Sampling are not implemented. ## Usage ### Basic Usage ```bash mcp-chat ``` By default, it reads the configuration file, `llm_mcp_config.json5`, from the current directory. Then, it applies the environment variables specified in the `.env` file, as well as the ones that are already defined. It outputs local MCP server logs to the current directory. ### With Options ```bash # Specify the config file to use mcp-chat --config my-config.json5 # Store local (stdio) MCP server logs in specific directory mcp-chat --log-dir ./logs # Enable verbose logging mcp-chat --verbose # Show help mcp-chat --help ``` ## Supported Model/API Providers - **OpenAI**: `gpt-5-mini`, `gpt-4.1-nano`, etc. - **Anthropic**: `claude-sonnet-4-0`, `claude-3-5-haiku-latest`, etc. - **Google (GenAI)**: `gemini-2.5-flash`, `gemini-2.5-pro`, etc. - **xAI**: `grok-3-mini`, `grok-4`, etc. - **Cerebras**: `gpt-oss-120b`, etc. - **Groq**: `openai/gpt-oss-20b`, `openai/gpt-oss-120b`, etc. ## Configuration Create a `llm_mcp_config.json5` file: - [The configuration file format](https://github.com/hideya/mcp-client-langchain-py/blob/main/llm_mcp_config.json5) for MCP servers follows the same structure as [Claude for Desktop](https://modelcontextprotocol.io/quickstart/user), with one difference: the key name `mcpServers` has been changed to `mcp_servers` to follow the snake_case convention commonly used in JSON configuration files. - The file format is [JSON5](https://json5.org/), where comments and trailing commas are allowed. - The format is further extended to replace `${...}` notations with the values of corresponding environment variables. - Keep all the credentials and private info in the `.env` file and refer to them with `${...}` notation as needed ```json5 { "llm": { "provider": "openai", "model": "gpt-4.1-nano", // model: "gpt-5-mini", }, // "llm": { // "provider": "anthropic", // "model": "claude-3-5-haiku-latest", // // "model": "claude-sonnet-4-0", // }, // "llm": { // "provider": "google_genai", // "model": "gemini-2.5-flash", // // "model": "gemini-2.5-pro", // }, // "llm": { // "provider": "xai", // "model": "grok-3-mini", // // "model": "grok-4", // }, // "llm": { // "provider": "cerebras", // "model": "gpt-oss-120b", // }, // "llm": { // "provider": "groq", // "model": "openai/gpt-oss-20b", // // "model": "openai/gpt-oss-120b", // }, "example_queries": [ "Tell me how LLMs work in a few sentences", "Are there any weather alerts in California?", "Read the news headlines on bbc.com", ], "mcp_servers": { // Local MCP server that uses `npx` "weather": { "command": "npx", "args": [ "-y", "@h1deya/mcp-server-weather" ] }, // Another local server that uses `uvx` "fetch": { "command": "uvx", "args": [ "mcp-server-fetch" ] }, // Embedding the value of an environment variable "brave-search": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-brave-search" ], "env": { "BRAVE_API_KEY": "${BRAVE_API_KEY}" } }, // Remote MCP server via URL // Auto-detection: tries Streamable HTTP first, falls back to SSE "remote-mcp-server": { "url": "https://api.example.com/..." }, // Server with authentication "github": { "type": "http", // recommended to specify the protocol explicitly when authentication is used "url": "https://api.githubcopilot.com/mcp/", "headers": { "Authorization": "Bearer ${GITHUB_PERSONAL_ACCESS_TOKEN}" } }, // For MCP servers that require OAuth, consider using "mcp-remote" "notion": { "command": "npx", "args": ["-y", "mcp-remote", "https://mcp.notion.com/mcp"], }, } } ``` ### Environment Variables Create a `.env` file for API keys: ```bash OPENAI_API_KEY=sk-ant-... ANTHROPIC_API_KEY=sk-proj-... GOOGLE_API_KEY=AI... XAI_API_KEY=xai-... CEREBRAS_API_KEY=csk-... GROQ_API_KEY=gsk_... # Other services as needed GITHUB_PERSONAL_ACCESS_TOKEN=github_pat_... BRAVE_API_KEY=BSA... ``` ## Popular MCP Servers to Try There are quite a few useful MCP servers already available: - [MCP Server Listing on the Official Site](https://github.com/modelcontextprotocol/servers?tab=readme-ov-file#model-context-protocol-servers) ## Troubleshooting - Make sure your configuration and .env files are correct, especially the spelling of the API keys - Check the local MCP server logs - Use `--verbose` flag to view the detailed logs - Refer to [Debugging Section in MCP documentation](https://modelcontextprotocol.io/docs/tools/debugging) ## Change Log Can be found [here](https://github.com/hideya/mcp-client-langchain-py/blob/main/CHANGELOG.md) ## Building from Source See [README_DEV.md](https://github.com/hideya/mcp-client-langchain-py/blob/main/README_DEV.md) for details. ## License MIT License - see [LICENSE](https://github.com/hideya/mcp-client-langchain-py/blob/main/LICENSE) file for details. ## Contributing Issues and pull requests welcome! This tool aims to make MCP server testing as simple as possible.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hideya/mcp-client-langchain-py'

If you have feedback or need assistance with the MCP directory API, please join our Discord server