Skip to main content
Glama

Prompt Ops MCP

A streamlined Model Context Protocol (MCP) server that optimizes prompts using meta-prompting techniques. This server can be easily integrated into Cursor and other MCP-compatible tools to enhance prompt quality and effectiveness.

Features

  • Two-Turn Prompt Optimization: Transform basic prompts into sophisticated, structured requests using a simple two-turn approach

  • Meta-Prompting Technique: Leverages the LLM's capabilities to apply optimization guidelines

  • MCP Integration: Seamlessly integrates with Cursor and other MCP-compatible tools

  • TypeScript: Built with TypeScript for type safety and better development experience

Installation

npm install -g prompt-ops-mcp

From Source

git clone <repository-url> cd prompt-ops-mcp npm install npm run build

Usage

Integration with Cursor

Add the following to your Cursor MCP settings:

{ "mcpServers": { "prompt-optimizer": { "command": "npx", "args": ["prompt-ops-mcp"] } } }

Direct Usage

# Run the server npx prompt-ops-mcp # Or if installed globally prompt-ops-mcp

How It Works: Two-Turn Optimization

The prompt optimizer uses a simple two-turn approach:

  1. Turn 1: Provide your original prompt → Receive optimization guidelines

  2. Turn 2: Provide the optimized prompt → Get it ready for use

Available Tool: promptenhancer

Parameters:

  • originalPrompt: The prompt you want to optimize (for Turn 1)

  • optimizedPrompt: The optimized prompt created by following the guidelines (for Turn 2)

Example Usage (Turn 1):

@prompt-ops promptenhancer {"originalPrompt": "Write a Python function to calculate fibonacci numbers"}

Example Usage (Turn 2):

@prompt-ops promptenhancer {"optimizedPrompt": "Your optimized prompt here..."}

Optimization Guidelines

The meta-prompting framework includes guidance for:

  1. Clarifying Intent and Scope: Making implicit requirements explicit

  2. Adding Structure and Organization: Breaking complex requests into clear sections

  3. Enhancing with Reasoning Elements: Including step-by-step thinking instructions

  4. Providing Context and Examples: Adding relevant background information

  5. Setting Quality Standards: Defining success criteria and constraints

Example Transformation

See example-two-turn.md for a complete example of the two-turn optimization process.

Development

Setup

git clone <repository-url> cd prompt-ops-mcp npm install

Development Scripts

# Run in development mode npm run dev # Build the project npm run build # Run tests npm run test # Lint code npm run lint # Format code npm run format

Project Structure

src/ ├── index.ts # Main MCP server implementation ├── prompt-optimizer.ts # Core prompt optimization logic └── types.ts # TypeScript type definitions

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests for new functionality

  5. Run npm run lint and npm run format

  6. Submit a pull request

License

MIT License - see LICENSE file for details

Support

For issues and questions:

Changelog

v1.0.0

  • Initial release with two-turn prompt optimization

  • Full MCP integration support

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/heyjustinai/prompt-ops-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server