We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/heyjustinai/prompt-ops-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
README.md•3.62 kB
# Prompt Ops MCP
A streamlined Model Context Protocol (MCP) server that optimizes prompts using meta-prompting techniques. This server can be easily integrated into Cursor and other MCP-compatible tools to enhance prompt quality and effectiveness.
## Features
- **Two-Turn Prompt Optimization**: Transform basic prompts into sophisticated, structured requests using a simple two-turn approach
- **Meta-Prompting Technique**: Leverages the LLM's capabilities to apply optimization guidelines
- **MCP Integration**: Seamlessly integrates with Cursor and other MCP-compatible tools
- **TypeScript**: Built with TypeScript for type safety and better development experience
## Installation
### Via NPM (Recommended)
```bash
npm install -g prompt-ops-mcp
```
### From Source
```bash
git clone <repository-url>
cd prompt-ops-mcp
npm install
npm run build
```
## Usage
### Integration with Cursor
Add the following to your Cursor MCP settings:
```json
{
"mcpServers": {
"prompt-optimizer": {
"command": "npx",
"args": ["prompt-ops-mcp"]
}
}
}
```
### Direct Usage
```bash
# Run the server
npx prompt-ops-mcp
# Or if installed globally
prompt-ops-mcp
```
## How It Works: Two-Turn Optimization
The prompt optimizer uses a simple two-turn approach:
1. **Turn 1**: Provide your original prompt → Receive optimization guidelines
2. **Turn 2**: Provide the optimized prompt → Get it ready for use
### Available Tool: `promptenhancer`
**Parameters:**
- `originalPrompt`: The prompt you want to optimize (for Turn 1)
- `optimizedPrompt`: The optimized prompt created by following the guidelines (for Turn 2)
**Example Usage (Turn 1):**
```
@prompt-ops promptenhancer {"originalPrompt": "Write a Python function to calculate fibonacci numbers"}
```
**Example Usage (Turn 2):**
```
@prompt-ops promptenhancer {"optimizedPrompt": "Your optimized prompt here..."}
```
## Optimization Guidelines
The meta-prompting framework includes guidance for:
1. **Clarifying Intent and Scope**: Making implicit requirements explicit
2. **Adding Structure and Organization**: Breaking complex requests into clear sections
3. **Enhancing with Reasoning Elements**: Including step-by-step thinking instructions
4. **Providing Context and Examples**: Adding relevant background information
5. **Setting Quality Standards**: Defining success criteria and constraints
## Example Transformation
See [example-two-turn.md](example-two-turn.md) for a complete example of the two-turn optimization process.
## Development
### Setup
```bash
git clone <repository-url>
cd prompt-ops-mcp
npm install
```
### Development Scripts
```bash
# Run in development mode
npm run dev
# Build the project
npm run build
# Run tests
npm run test
# Lint code
npm run lint
# Format code
npm run format
```
### Project Structure
```
src/
├── index.ts # Main MCP server implementation
├── prompt-optimizer.ts # Core prompt optimization logic
└── types.ts # TypeScript type definitions
```
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests for new functionality
5. Run `npm run lint` and `npm run format`
6. Submit a pull request
## License
MIT License - see LICENSE file for details
## Support
For issues and questions:
- GitHub Issues: [Create an issue](https://github.com/yourusername/prompt-ops-mcp/issues)
- Discussions: [Join the discussion](https://github.com/yourusername/prompt-ops-mcp/discussions)
## Changelog
### v1.0.0
- Initial release with two-turn prompt optimization
- Full MCP integration support