OpenRouter MCP Server
- openrouterai
- src
- tool-handlers
import OpenAI from 'openai';
import { ChatCompletionMessageParam } from 'openai/resources/chat/completions.js';
import { ToolResult } from '../types.js'; // Import the unified type
// Maximum context tokens (matches tool-handlers.ts)
const MAX_CONTEXT_TOKENS = 200000;
export interface ChatCompletionToolRequest {
model?: string;
messages: ChatCompletionMessageParam[];
temperature?: number;
}
// Utility function to estimate token count (simplified)
function estimateTokenCount(text: string): number {
// Rough approximation: 4 characters per token
return Math.ceil(text.length / 4);
}
// Truncate messages to fit within the context window
function truncateMessagesToFit(
messages: ChatCompletionMessageParam[],
maxTokens: number
): ChatCompletionMessageParam[] {
const truncated: ChatCompletionMessageParam[] = [];
let currentTokenCount = 0;
// Always include system message first if present
if (messages[0]?.role === 'system') {
truncated.push(messages[0]);
currentTokenCount += estimateTokenCount(messages[0].content as string);
}
// Add messages from the end, respecting the token limit
for (let i = messages.length - 1; i >= 0; i--) {
// Skip system message if already added
if (i === 0 && messages[0]?.role === 'system') continue;
const messageContent = messages[i].content;
// Handle potential null/undefined content safely
const contentString = typeof messageContent === 'string' ? messageContent : '';
const messageTokens = estimateTokenCount(contentString);
if (currentTokenCount + messageTokens > maxTokens) break;
truncated.unshift(messages[i]);
currentTokenCount += messageTokens;
}
return truncated;
}
// Update function signature to return Promise<ToolResult>
export async function handleChatCompletion(
request: { params: { arguments: ChatCompletionToolRequest } },
openai: OpenAI,
defaultModel?: string
): Promise<ToolResult> {
const args = request.params.arguments;
// Validate model selection
const model = args.model || defaultModel;
if (!model) {
return {
isError: true, // Ensure isError is present
content: [
{
type: 'text',
// Add "Error: " prefix
text: 'Error: No model specified and no default model configured in MCP settings. Please specify a model or set OPENROUTER_DEFAULT_MODEL in the MCP configuration.',
},
],
};
}
// Validate message array
if (!args.messages || args.messages.length === 0) { // Add check for undefined/null messages
return {
isError: true, // Ensure isError is present
content: [
{
type: 'text',
// Add "Error: " prefix
text: 'Error: Messages array cannot be empty. At least one message is required.',
},
],
};
}
try {
// Truncate messages to fit within context window
const truncatedMessages = truncateMessagesToFit(args.messages, MAX_CONTEXT_TOKENS);
const completion = await openai.chat.completions.create({
model,
messages: truncatedMessages,
temperature: args.temperature ?? 1,
});
// Format response to match OpenRouter schema
const response = {
id: `gen-${Date.now()}`,
choices: [{
finish_reason: completion.choices[0].finish_reason,
message: {
role: completion.choices[0].message.role,
content: completion.choices[0].message.content || '',
tool_calls: completion.choices[0].message.tool_calls
}
}],
created: Math.floor(Date.now() / 1000),
model: model,
object: 'chat.completion',
usage: completion.usage || {
prompt_tokens: 0,
completion_tokens: 0,
total_tokens: 0
}
};
// Add isError: false to successful return
return {
isError: false,
content: [
{
type: 'text',
text: JSON.stringify(response, null, 2),
},
],
};
} catch (error) {
console.error('Error during chat completion:', error); // Log the error
// Handle known and unknown errors, always return ToolResult
if (error instanceof Error) {
return {
isError: true,
content: [
{
type: 'text',
// Add "Error: " prefix
text: `Error: OpenRouter API error: ${error.message}`,
},
],
};
} else {
// Handle unknown errors
return {
isError: true,
content: [
{
type: 'text',
text: 'Error: An unknown error occurred during chat completion.',
},
],
};
}
// DO NOT throw error;
}
}