Skip to main content
Glama
test_8_sessions.do2.8 kB
* ============================================================================= * Long-running test file for stata-mcp 8 parallel sessions * ============================================================================= * Capture session start local start_time = c(current_time) local session_marker = runiform() * 10000 display "==========================================" display "SESSION MARKER: `session_marker'" display "START TIME: `start_time'" display "==========================================" * Phase 1: Data generation display _newline "PHASE 1: Generating large dataset..." sleep 2000 clear set obs 5000 gen id = _n gen x1 = rnormal(0, 1) gen x2 = rnormal(5, 2) gen x3 = runiform() gen group = ceil(runiform() * 10) gen y = 3*x1 - 2*x2 + 5*x3 + rnormal(0, 1) display "Dataset created with " _N " observations" * Phase 2: Summary statistics display _newline "PHASE 2: Computing summary statistics..." sleep 1500 summarize x1 x2 x3 y * Phase 3: Multiple regressions display _newline "PHASE 3: Running multiple regressions..." sleep 2000 display "--- Regression 1: Simple ---" quietly regress y x1 display "R-squared: " e(r2) display "--- Regression 2: Multiple ---" quietly regress y x1 x2 display "R-squared: " e(r2) display "--- Regression 3: Full model ---" regress y x1 x2 x3 * Phase 4: Group analysis display _newline "PHASE 4: Group-level analysis..." sleep 1500 tabstat y, by(group) statistics(mean sd min max n) * Phase 5: Bootstrap simulation display _newline "PHASE 5: Running bootstrap simulation..." sleep 2000 local boot_results = 0 forvalues b = 1/50 { quietly { preserve bsample regress y x1 x2 x3 local boot_results = `boot_results' + e(r2) restore } if mod(`b', 10) == 0 { display " Bootstrap iteration `b' complete" } } local avg_r2 = `boot_results' / 50 display "Average bootstrap R-squared: `avg_r2'" * Phase 6: Monte Carlo display _newline "PHASE 6: Monte Carlo simulation..." sleep 1500 local mc_sum = 0 forvalues m = 1/100 { quietly { drop _all set obs 500 gen x = rnormal() gen y = 2*x + rnormal() regress y x local mc_sum = `mc_sum' + _b[x] } } local mc_avg = `mc_sum' / 100 display "Monte Carlo average coefficient: `mc_avg'" * Phase 7: Final pause and summary display _newline "PHASE 7: Final processing..." sleep 2000 * End timing local end_time = c(current_time) display _newline "==========================================" display "SESSION MARKER: `session_marker'" display "START TIME: `start_time'" display "END TIME: `end_time'" display "STATUS: COMPLETED SUCCESSFULLY" display "=========================================="

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/hanlulong/stata-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server