Skip to main content
Glama
api_quick_reference.md1.94 kB
# API快速参考 ## 🟢 可用API快速参考 ### KEGG API ```bash # 基础URL https://rest.kegg.jp/ # 常用端点 GET /list/pathway # 通路列表 GET /link/pathway/hsa:TP53 # 基因-通路关联 GET /find/genes/cancer # 基因搜索 ``` ### STRING API ```bash # 基础URL https://string-db.org/api/ # 常用端点 GET /json/network?identifiers=TP53&species=9606 GET /json/functional_annotation?identifiers=TP53 GET /json/enrichment?identifiers=TP53&species=9606 ``` ### UniProt API ```bash # 基础URL https://rest.uniprot.org/uniprotkb/ # 常用端点 GET /P04637 # 蛋白质信息 GET /P04637.fasta # FASTA序列 GET /search?query=organism_id:9606 # 高级搜索 ``` ### Ensembl API ```bash # 基础URL https://rest.ensembl.org/ # 常用端点 GET /lookup/id/ENSG00000141510 GET /homology/id/ENSG00000141510?type=orthologues GET /overlap/region/human/17:7565097-7590856?feature=gene ``` --- ## 🛠️ 推荐的MCP工具实现模板 ```python @mcp.tool() async def kegg_pathway_analysis( gene_list: list[str], organism: str = "hsa" ) -> dict[str, Any]: """KEGG通路分析工具""" # 实现 KEGG API 调用 pass @mcp.tool() async def string_network_analysis( proteins: list[str], species: int = 9606, confidence: float = 0.4 ) -> dict[str, Any]: """STRING蛋白质互作网络分析""" # 实现 STRING API 调用 pass @mcp.tool() async def ensembl_comparative_analysis( gene_id: str, target_species: list[str] ) -> dict[str, Any]: """Ensembl跨物种比较分析""" # 实现 Ensembl API 调用 pass ``` --- ## 📋 优先级建议 1. **立即实现**: KEGG, STRING, UniProt, Ensembl 2. **需要研究**: Reactome, QuickGO 3. **暂时避免**: BioGRID, RCSB PDB --- *详细调研报告请参考:[bioinformatics_apis_research.md](./bioinformatics_apis_research.md)*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gqy20/genome-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server